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Noncommutative geometry
and theoretical physics

R. COQUEREAUX (*)

Gordon McKay Laboratory
Harvard University
Cambridge, Massachusents 02138, U.S.A.

Abstract. The structure of 2 manifold can be encoded in the commutative algebra of
functions on the manifold it self — this is usual —. In the case of a non commutative
algebra there is no underlying manifold and the usual concepts and tools of differen-
tial geometry (differential forms, De Rham cohomology, vector bundles, connections,
elliptic operators, index theory ... ) have to be generalized. This is the subject of non
commutative differential geometry and is believed to be of fundamental importance
in our understanding of quantum field theories. The present paper is an introduction
for the non specialist and a review of the principal results on the field.

1. INTRODUCTION

The interplay between mathematics and physics, and in particular between geome-
try and quantum field theory, has played an important role during the last fifteen years.
Most of the tools handled by theoretical physicists involve usually an underlying smooth
manifold of real dimension 3, 4 or more (the description of string theory involves loop
spaces which are infinite dimensional). The geometrical description of a quantized field
interacting with several external other fields has reached a satisfactory status (think, for
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example, of a Dirac operator acting on spinors coupled to an extemnal Yang Mills ficld);
however this is not yet the case for a fully interacting quantum field theory (even in
the «simple» case of quantum electrodynamics where we have fwo coupled cquations,
namely the Dirac cquatj(zn for ¢ coupled to A, and the Maxwell equation for A, cou-
pled to the vector field 9,1 ). At the first quantized level, a field theory can usually be
described in terms of sections of vector bundles and of operators (linear or not) acting
on them. At the second quantized level, a quantum field theory, cannot be described in
such simple terms. For instance when we consider the space T of sections ¢(z) of
some vector bundle endowed with a real scalar product and build the infinite dimensional
Clifford algebra CLiff( I ), thus tuming the classical ficlds ¢(z) into (second quantized)
anticommuting quantum ficlds, we are no longer doing some «classical» geometry on a
smooth manifold.

Our aim in this introduction is to explain what noncommutative geometry is about.
Before that, we should remind the following result (Gelfand): all the propertics of a
spacc X can be encoded in the algebra of functions C(X) on this space (1) (and con-
versely of course). In particular, the topology,the measure theory, (cf. Remarks in §12),
the De Rham theory, the K -theory (ctc.) of a smooth manifold of M can be described
(and defined) directly in terms of the algebra C( M) of functions on M . For instance
the space of sections of a vector bundle over M will be defined as a module — a rep-
resentation space — for the algebra C(M) (actually it is a projective module of finitc
type cf. §9). C(M) being a commutative algebra, usual geometry (and classical ficld
theory) is, in a sense, a «commutative geometry». In order to get results in noncom-
mutative geometry, one may proceed as follows: first choose a geometrical notion that
you know how to formulate in terms of a space X , then express this notion in terms of
the commutative algebra C(X) , finally, try to define this notion in such a way that it
makes sense for an arbitrary noncommutative (but associative) algebra A . Of course, in
this way, usual geometry (Z.c. commutative gcometry) will appear as a particular casc of
noncommutative gcometry. Notice that physicists have alrcady followed this path when
they have discovered supersymmetries: indeed, superfunctions (and superfields) do not
appear as functions on a usual space since they would make a commutative algebra in
this case. Supergeometry (cf. [1],[2]) can be thought of as the first step beyond usual ge-
ometry, namely the passage from commutative algebra to graded commutative algebras.

{()Let A a commutative algebra and z be an irreducible representation of A. Since A is
commutative, we may choose the complex numbers as representation space where z acts by
multiplication, r.e., if f belongsto A, z[ f] isacomplex number. Let us call X (= spA) the
space of irreducible represcntations of A ; then, to each f in A, we may associate a function
on X ,still denoted by f via the following beautifully simple relation f(z) = z{ f] . Thercforc
A = C(X) . More precisely, onc should take A as a Banach algebra with unit and talk about
maximal ideals rather than irreducible representations but the idea is the same.
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The purpose of noncommutative geometry is to go beyond that and to provide us with
the mathematical tools required to study noncommutative algebras as noncommutative
«spaces».

Usual tools of differential geometry have an analogue in a noncommutative context
and their use in order to develop a theory of interacting strings has been advocated in [3].
However, noncommutative gecometry has many more possible applications in quantum
field theory, in statistical physics or even in solid state physics (where it has been used to
provide an explanation for the Quantum Hall effect [4]). In mathematics, besides cast-
ing a new light on a familiar subject (geometry of manifolds), it may be used in many
situations where the usual tools of differential geometry fail to apply because the space
under study is not a «good» manifold (orbifolds, space of leaves of a foliation...) or
because there is no manifold at all (an abstract noncommutative algebra). Noncommu-
tative geometry (and in particular cyclic cohomology) is also a good framework where
to discuss infinite-dimensional spaces like the loop-space of amanifold M [30] and this
brings us back again to the theory of strings.

Our aim, in what follows, is not to describe all the results and concepts of noncommu-
tative geometry (a book would not be enough) but to describe a few topics which have
been studied in the last five years. As alrcady mentioned, the tools and techniques of
noncommutative geometry are often the noncommutative counterparts of those of com-
mutative (usual) geometry — although in many cases, one should not expect an obvious
generalization! This remark motivates the organization of this paper. First, the algebra
of functions on a manifold is replaced by an arbitrary associative — but not necessarily
commutative — algebra A ; then we introduce in Section 2 the universal differential alge-
bra £ (A) and in Section 3 the Hochshild cohomology H* which plays the analogue
of the algebra of differential forms on a manifold. The noncommutative counterpart of
De Rham cohomology is cyclic cohomology (or better: periodic cyclic cohomology)
and is described in Sections 4 and 5. This is replaced in some interesting cases by entire
cyclic cohomology when the algebra is «big» (Section 7). Differential forms and the De
Rham complex are not the only tools of differential geometry, one can indeed probe the
structure of manifolds by studying fiber bundies above them, this leads to the definition
of characteristic classes and to K -theory . The same thing is true here and we devote the
last sections of this article to this study; however, these last topics will be only briefly
discussed in order to keep the size of this paper reasonable.

The noncommutative analogue of vector bundles is described in Section 9 (and this
leads into the definition of K -theory of algebras). Connections (Yang Mills fields) are
a handy tool in usual geometry: the noncommutative corresponding concept is defined
in the same section. Index theory for elliptic operators has also a noncommutative gen-
eralization which is described in Section 10. Finally, it can be seen that most ideas fit
beautifully in the bivariant K -theory of Kasparov ( K K -theory ). This does not seem
to be well-known by physicists and we conclude with a short introduction to the corre-
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sponding ideas.

Noncommutative geometry is a branch of mathematics which has undergone pro-
found transformations in the last years but it does not seem to have achieved yet a devel-
opment sufficient to allow for a nonperturbative description of a quantum field theory
like quantum electrodynamics. Our feeling, however, is that it points in the right di-
rection and our hope is to convince the theoretical physicist (for whom this review is
written) that it is so.

How to read these notes

In the present paper, we follow an approach which does not necessarily coincides with
the history of the subject (for instance, Fredholm modules are only introduced in section
10). The following wants to be a tentatively pedagogical introduction to noncommuta-
tive geometry (and also tries as often as possible to make the link with standard tools
used by theoretical physicists). For this reason, several interesting points, although log-
ically situated in the body of the paper, should certainly be skipped by the novice. The
reader should first ook at the following sections (in this order) and skip the others:

2.1,22,23,24,25,2.6,2.7,3.1,35,36,3.7,3.9,4.1,45,46,5.1,53,54, 7.1
(i), 9.1,9.2,9.4, 9.5, 10.1, 10.2, 10.3, 10.5, 12.

The special symbol & has been added to the title of those sections that should be
skipped on first reading.

Remarks and acknowledgements

It is believed that the formalism of non commutative geometry will someday be of
fundamental importance in order to formulate our ideas about Quantum Field Theory.
The physicist reader may be disapointed because this will not be done in the present
review .... On the other hand, the mathematician reader has already several review ar-
ticles at his disposal [8], [11], besides the basic reference [7]. Our aim, here, is mainly
to help the reader interested in non commutative geometry and to narrow the gap that
may exist between the standard mathematical concepts known (and used) by most theo-
retical physicists and those that appear often as a prerequisite for the reading of articles
such as [7]. For this reason, many results will be given without proof (or only with an
indication of what the proof is) but we will try to put the accent on what the motivations
for the introduction of these new concepts are. Also, we will use, as often as possible,
«standard» geometry as a guideline. As already mentionned previously, the following
should be considered as an invitation to further study.

Most of what follows arose from discussions with A. Connes, J. Cuntz, D. Kastler, P.
Seibt and R. Zekri. I would like to thank them here.
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2. THE DIFFERENTIAL ENVELOPE(S) OF AN ASSOCIATIVE ALGEBRA
2.1. Definition

Let A be an associative algebra. We can associate with it a bigger algebra Q(A) ,
called its differential envelope, thanks to the following construction. To every element
a in A, we associate a symbol ba. € (A), as a vector space is defined as the linear
span of «words» built out of symbols such as a and a. The multiplication in Q (A)
should satisfy the usual properties (associativity, distributively over +) (2) but we impose
the following relation:

¢)) Sa.b = 6(ab) — a.6b.

The above relation allows us to shift symbols like b to the left and to write any
element of Q(A) as a linecar combination of monomials of the kind ay8a, ...6a, or
8ay8a, ...6a, wherethe a, belongsto A. Let us work out one example

Qg 601 502 a3 804 = Qg 6a1 5( Q073 ) 604 — Qg 601 Qs 503 804
(2) = 006(115(0«203)604 —006(a102)603504+
+ ag0,8a,6056a,.

Notice that, in relation (1), 6(ab) is just a symbol (the symbol that we associate with
the element ab of A in the construction of Q(A) ). However, we want § to become
an operator, and this is done by defining

8(ag6a,ba, ...6a,) = bayba, ...6a,

8(8agba, ...8a,) = 0.

3

Notice that (3) implies 62 = 0 .

(Q(A),8) is then a differential algebra and § is an odd derivation .This algebra
is in particular Z-graded: Q(A) = 2, Q(A)" where Q(A)° = A and Q(A)P
denotes the linear span of monomials ag8a; ...8a, or 8a,...8a,. Since it has no
more relations than those coming from A and from the Leibniz rule, the fact that it is
a universal object is not too surprising. Here, by «universal» we mean that it factorizes
derivations: if B is an algebra (it can be A itself), if « is a morphi sm from A to
B (it can be the identity) and if D is a derivation from A to B twisted by «, ie.,

(2) More precisely, we could define € (A) as the free algebra generated by the symbols o ,
&a, a € A , modulo the relation (1) and the relations A.a + p.b = (da + ub), a.b = (ab),
A.6a + pu.6b = 6(ra + ub) , where . and + denote the product and sum in the free algebra.
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D(ab) = D(a)a(b) + a(ae)D(b) then, there exist a morphism & from Q(A) to
B such that @ (egba;...8a,) = afag)D(a(a,))...D(a(a,)) . In particular, if
B is a differential algebra and if there is a morphism from A to B, then B can be
gotten from Q(A) by a homomorphism of differential algebra. These properties can
be summarized by the diagrams

Q(A)
7 N
A > 7 B
and
Q(A)
4 ~
A a ) (B, d)

with D = da . These properies justify to call Q(A) the «universal differential enve-
lope» of A.

2.2, Problems of unit

The reader will have noticed that, for the moment, we did not mention the existence
of a possible unit in A. In particular, if A is unital, we will call e its unit (nof 1)
and its differential in Q(A) will not vanish (8e # 0 ). But then Q(A) has no unit
(ebe # be) , and we can fix that by adding formally a unit (that we call 1) to Q(A),
with the rule §1 = 0. The resulting algebra (the unital differential envelope of A)
will be called Q(A4) . Of course, we could also have built it by first adding formally a
unit 1 to A (the resulting algcbra bcmg A), then constructing Q (A) with the extra
rule 61 = 0. Of course Q(A) = Q( A) . Notice that an arbitrary element of Q( A)
can be written canonically as a sum of monomial of the form &,6a,8a, ...8a, where
Gg=X+ag, A=2-1€Cand g, € A.

2.3. Other constructions of Q(A)

The construction of ﬁ(A) described above (let us call it construction No. 1) is
enough for calculational purposes but there exist altemative constructions which onc
should be aware of, either because they are frequently used in the mathematical literature
or because they cast another light on the nature of this universal object. We will present
two other methods. Construction No. 2: Call ﬁO(A) = Z, ﬁn(A) —ARA®...QA,
with n factors A, n ¥ 0. Then define Q (A) = EBﬂﬁ"(A) . Notice that, since
A=C+ A, wehave ﬁn(A) =CRA®R.. QAPARAR®...® A. This shows
that ﬁ"(A) is isomorphic, as a vector space, with A®" @ A®™! _In particular, Q(A4)
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cannot be identified with the tensor algebra over A . Of course, the link with construction
No. 1 is made via the following correspondence: $a,6a,...6a, =1 Q®a; ®...®a,
and ay6a,8a,...60, = 3y ®02; ®...®a,, a; € A. Also, to be compatible with
construction No. 1, multiplication from the right by an element of A is defined by the
following rule:

(g ®a;®...Q0a,)b=0y R0, ®...Q a,b+

n
+Z(—1)”‘iao ®...80,0,,,®...00a,Qb

i=0
multiplication in Q(A) is specified by requiring that

(ao ®al®...®a")(b0®bl®...®bm)=
=((0y®...®0a,)by)) ®,®...®b,,.

Of course multiplication from the left by an element of A is just gotten by
blag®a; ®...0,) =boy ®a;®...Qaq,.

Construction No. 3: We first consider the multiplication m as a map from A®A 10
A by m(a®b) = ab. Thencall Qy(A) = A, Q,(A) = Ker m (notice that in
the example A = C(X), Ker m is the space of functions of two variables which
vanish on the diagonal i.e., such that f(z,z) = 0) . Then define ﬁn(A) =Ker m®,
...®4 Ker m and QA = @, fln(A) . Notice that the previous tensor products are
taken over A and not over C as it was before. This last definition of the differential
envelope seems more involved than the previous one but it is rather convenient as we
shall see later. Here again, monomials like 6a,6a, ...8¢, and ayba;...8a, canbe
written in terms of tensor products but the correspondence is not the same as in the
construction No. 2, also the product rule is different. For instance, we may write b =
1b—-b®1,abb=a®b—ab® 1;itisclearthat 6 and aéb belongto Ker m
since m(a®b—ab® 1) = ab — ab =0 . In terms of tensor products, the product rule
is now gotten by concatenation, for instance:

abbbc=(a®R®b—-ab@DN(1 QRc—-c®1)
=aRbRc—-ab®1 R c—aRbcR1+abR@c®1.

We can go from this expression to the corresponding one in construction No. 2 by
killing the «1» which are not in first position.
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2.4. The acyclic Hochshildoperator

The main thing to remember is that, whatever the way we choose to realize Q (A),
the calculation rules are those given at the beginning of this section. Also, it is clear
that §~2(A) comes equipped with a Z-grading which counts the number of §. Since
any element of ﬁn(A) can be written as a linear combination of monomials of the
kind @¢8a,...8a, and 8a,...8a,, it is convenient to write Q(A4) = ASQ(A) +
8Q(A) . Since we have an operation § of square zero, it is natural to compute the
cohomology of the complex ﬁ‘( A) . From the construction of § , it is a priori clear that
this cohomology is just zero. This can also be seen as follows: let w be a monomial of
grade dw and z anelementin A ; we define the following operatorin Q(A) (not in
ﬁ(A) since z is not determined by 8z if §1 is zero).

4 B(wbz) = (=1)%wz.

Notice that #' is defined in Q( A) butnotin ﬁ(A) since 6(z) and 6(z+ 1) are
the same in Q(A) . Then, rules of calculation in Q(A) show that B6+ 66 =1;
therefore, for any 7 we get 8'67+ 88’7 = 7 and if 67 = 0 we get 7 = 6§87 which
shows that the cohomology of § is indeed trivial (in Q(A) , this cohomology is almost
trivial since §1 = O although 1 isnotthe § of something). The operator 8’ is called the
acyclic Hochshild homology operator for reasons which will become clear in the next
section.

2.5. The Z,-Graded Case

It may happen that A is a Z,-graded algebra. In this case, we may forget the
Z,-graduation and construct the differential envelope as above, however, we may also
use this graduation and build a universal Z,-graded differential algebra associated with
A that we propose to call the differential superenvelope. The only difference is that now,
eq. (1) is replaced by the following

) Sa.b=8(ab) — (=1)%94.6b

where Ja denotes the intrinsic Z,-grading of ¢ € A. The differential superenvelope
is also a universal object because it factories graded derivations. In what follows, we
will mostly give formulae valid in the ungraded case in order not to clutter them with
minus signs. Some of the formulae are anyway the same, for instance eq. (4), but now
Ow denotes the total grading of w , i.e., the sum of the Z— grading and Z,-grading .

The construction of the differential envelope goes back to Cartan but it can be found
in [6,7] under several disguises, let us also quote {8,9] for a particular study of the
Z,-graded case.
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2.6. Example 1: A= C(X)

In order 1o illustrate the previous constructions, let us contemplate the classical exam-
ple of a commutative algebra A = C(X) where C(X) will denote in the following of
this paper the space of smooth functions on a differentiable manifold X (it may happen
that some properties that we discuss here and after have to be modified if the space is
bigger than C*(X) , so we will stick to the smooth case for simplicity but will most of
the time drop the co superscript) . The first thing to notice is that AQ A = C(X x X)
and (3) more generally A®" = C(X x ... x X), therefore, in a sense, when we go
from A to Q(A) we go from aone-body problem to a many-body problem. We already
identified Q,(A) with the functions of two variables which vanish on the diagonal (of
Description No. 3). Indeed if f € A, then,since §f = 1® f - f® 1, we get
5f(z,y) = f(y) — f(z) and we can therefore visualize §f as a finite difference. The
Leibniz rule 6( fg) = 6fg+ f6g can be translated as follows

f(wg(y) — f(x)g(x) =
= [f(y) — f(2)lg(y) + f(2)[g(y) —g(2)].

More generally, elements of Q;(A) will be of the kind F(z,y) = G(=z,y) —
G(z,z) where G is an arbitrary functionon X x X . Inthe same way, if f,g,h € A,
we get

fégbh(z,y,2) = f(2)(g(y) —g(2))(h(2) — h(y))

and more general elements of €,(A) will be of the kind
F(I,y,Z) = G(I,y,z) —G(z,:z:,z) - G(:E,y,y) + G(zazry)

where G is an arbitrary function on X x X x X . Notice that such functions vanish
on the diagonals (1-2) and (2-3) but not (1--3). This can obviously be generalized.
Q,(A) consists of those functionson X x ... x X (n+ 1 factors), which vanish on
contiguous diagonals. To illustrate the universal property of Q(A) , we may consider
the differential algebra A (X) of differential forms over X ; we have amap from A to
A%(X) whichis just the identity i . Then, there is a universal covering homomorphism
i from Q(A) to A(X) suchthat 1 (f,0f,...6f,) = fodfiy Adfy A...Adf,. Of
course, the kemel of this map is rather large: this is already clear from the fact A (X)
has dimension 29X bur Q(A) is infinite dimensional; also, if w is a «1-form» in

(3) Actually, we should use an inclusion sign rather than an equal sign but the equality can be
made true after completion.
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Q(A) -1ie.,anelement of Q,(A), its image under 7 .is a one form 8(w) in A (X)
and is such that 3(w) Ai(w) = 0, however w? is not zero but a well-defined element
of Q,(A) . This suggests that noncommutative connections will have new unexpected
features, even in the «classical» case where A = C(X) , cf. Section 9.4.

When X is a Riemannian manifold, we can also consider the example where B is
the Clifford algebra of the tangent bundle of X . B is not a differential algebra but
d: f€C(X) - df =+4*0,f isaderivation from A= C(X) to B. Again A can
be identified with a vector subspace of B and 3(f,6f,...6f) = fo df, ... df,.

2.7. Example2: A=C

In the particular case where X is just a point, the complex algebra of C(X) is just
the algebra of complex numbers. Let us describe ﬁ(C) , the differential envelope of
C (cf. also [8]). According to Section 2.2, let us call ¢ the unit of C and let us add
an extra unit 1. Elements of ﬁ(C) are linear combinations of monomials Mée + be
or pebe...8e. We have the rule 6(e?) = efe + See but e? = e therefore e =
ebe+ 6ee . We have now an interesting representation of Q(C) interms of creation and
annihilation operators. Indecd, let H be a Hilbert space (actually we will take H = C)
and F the bosonic or fermionic Fock space associated with H ; letalso f =1 € K
and justcall a = a(1), a* = a*(1) the annihilation and creation operators associated
with f = 1. Thenit is clear that we may represent e as the projector % (1+ ) where
4 = (=1)¢" counts the parity of the number of particles, and 8e as the annihilation
operator q ; indeed it is easy to check that

_(1+19 T+47n
= (27) 0r o (122).

Notice that a monomial of Q (C) will be represented as

or (52

where A\, p € C and p € N. Setting ¢ = §e, the defining relations of QC read
19+gy=0,7=1.

2.8. The Cuntz and Zekri algebras &

Before ending this section we want to mention that there exist another «universal»
object associated with any arbitrary associative algebra A, namely the Cuntz algebra
Q(A) (which is somctimes denoted gA). This object was defined abstractly in [10]
but it was realized afterwards (cf. {20, 23]) that Q( A) , as a set, is nothing ¢lse than the
differential envelope Q(.A) , however the product law is not the same. Let us indeed
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choose «, 8 in Q(A) and define
aoff = af if o iseven(ie, o€Q,,(A))
aofl = aff + abp if «isodd (i.e., a€Q,, (4).

In (6), X\ is an arbitrary scalar parameter. We call Q(A) the set Q(A) endowed
with the new product; notice that if A = 0 , then both algebras are the same. The highly
nontrivial remark (although it takes three lines to prove it) is that o is an associative
product: & o (B o 4) =(a o B) o . Therefore Q(A) is an associative algebra
and appears as a deformation of Q ( A) ; in what follows let us choose A = —1.Let a
and b be two elements of A, then from (1) and (6) we get

@) 6(a o b)=8a o b+a o &b+ ba o 8b.

In the cases where there is no risk of confusion, we may call «.» the product in Q( A)
and «q» the differential § (to remind us where we are!). Then (7) reads

®) g{a.b) = qa.b+ a.gb+ qga.gb.

Notice that ¢ appears naturally as an infinitesimal homomorphism. Indeed if u isamap
satisfying u(ab) = u(a)u(b) , then setting u = 1 + g leads directly to eq. (8). Like
Q(A) ,the algebras Q(A) isthe linear span of monomials of the type qa, ... qa, orthe
type agga; -..ga, and we may write Q(A) = Ag(A) ® ¢(A4). Calling Q, = Q(4),
and Q, = Q(A),, we notice that Q(A) is no longer graded but only filtered: we
have Q Q Z Q,,, but QQ, C @igqu, , so that Q( A) bears the same analogy
with Q(A) as the Clifford algebra compared with the algebra of exterior forms. The
main interest of the Cuntz algebra Q(A) is that it factorizes pairs of homomorphisms.
Let indeed ¢ and 4 be two homomorphisms from the algebra A into the algebra B
then k = ¢ — ¢ is not a homomorphism, indeed x(ab) = @(a)x(b) + x(a)p(b) +
k(a)k(b) (in particular if A = B and ¢ = 1 then « satisfies the same properties
as ¢ ). Obviously we may replace the data (, ) by the data (¢, & ). Universality of
Q(A) means that there exist a morphism v from Q(A) to B suchthat ¢(a) = v(a)
and k(a) = v(qa) .
This can be summarized by the following diagram

Q(A)

This property allows a very simple definition of the Kasparov KK ®-group or for
that matters K ®-groups, cf. Section 11. Besides, as we shall sec later when we de-
scribe cyclic cohomology, it is sometimes easier to use QA than Q A. A last uni-
versal object that one can associate [28] with an arbitrary associative algebra A is the
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Zekrn algebra e(A) = Q(A) x, Z, . Here o denotes the following involutive au-
tomorphism: o(z%¢z'...qz") = (-1)"(z® — qz°)gz'...qz"; o(gz'...qz") =
(=D"gz!...qz". €(A) is then defined as the cross-product of Q(A) and Z, , ic,
one identifies (w, 1) with (a(w),—(+£1)) . Asavectorspace e(A) = Q(A)BQ(A)
but as an algebra, it can be described as a Z,-graded subalgebra of the space of 2 x 2
vertices with elements in Q(A) :

Wo Wy
wy,w; € Q(A) — € e(A);
o(w;) owy)

the grading is of course given by

S

This algebra can be used to describe cyclic cohomology: as we shall see later, cyclic
cocycles will be related to «graded traces» on Q(A) but to usual traces on Q(A) or
€(A) depending upon the parity of the cocycle. €(.A) was first introduced in [24] to
allow a simple definitions of the KK'! groups (cf. Section 11).

2.9. Exterior differential forms and derivations &

In the case where A = C*°(X) , we know that differential forms can also be de-
fined as A-valued antisymmetric R-multilinear forms acting on vector fields; the vec-
tor fields themselves can be defined as derivations of the commutative algebra A . Let
us mimic the above construction in the noncommutative set-up. A being an asso-
ciative algebra, let L = DerA be the space of derivations on A (§ € L < Va,
be A £(ab) = £(a)b+ af(b)); L is the noncommutative analog of the space of
vector fields. Let A*( L, A) be the space of antisymmetric multilinear forms on L and
valuedin A ie,

>‘(£1) '-';5{_1)§i+1€i)€|’+2)---vfn) =
= —>‘(£])"'yE{_lygi)€{+])€i+2)"'En)'

The wedge product A and the differential d on A*(L, A) are then defined exactly
as in the standard commutative case; for example

_ (n+ m)!

AN nim!

Ar®w

where A is the antisymmetriser; also if a € A, we define (da)(§) = £(a) and extend
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it to the whole of A*.

n+1
d>‘(£l )52:' .. :&ml)=2(—l)i+1£iw(€])' .. ’éi)' . )EMI)

1=1

+Y (SDMMEELE - b )
i<y

ij=1

We could call A*(L, A) the algebra of exterior differential forms on A . Notice that
by universality of the algebra Q(A) (cf. Section 2.1), we have a morphism a46a; ...
8a, € Q(A) — agda,... Ada, € A(L, A) mapping the «universal differential
forms» onto the «exterior differential forms». Notice, that the complex A*(L,A) can
be considered as a particular case of the complex A*(L, E) of Chevalley-Eilenberg,
where L is aLie algebraand E is amodule over L . Onthe otherhand, L = Der(A)
is not usually a A-module (i.e.,if £ € L and o« € A, then af is not usually a
derivation). Moreover, even if itis a A-module and if w € A*(L,A) and a € A,
then w(af) is not necessarily equal to aw(§); it is therefore natural to introduce
A4(L,A) C A(L,A) by requiring A-linearity rather than only C-linearity (in the
case where L is a A-module); in this last case, one can even be more restrictive and
define App(L,A) as the subalgebra of A,(L,A) linearly generated by totally de-
composable tensors: in this way we obtain the classical De Rham complex in the case
A = C*(X) . The above construction can be nicely generalized to the case where A is
Z,-graded and is particularly nice when A is graded commutative algebra (we could
consider A as an algebra of functions over a superspace), cf. [8] [17].

Although the algebra A (L, A) plays an important role in the study of commutative
differential geometry, its importance, in the noncommutative content is weakened by the
fact that many algebras have no derivations at all (for example the complex numbers),
in those cases, the universal map Q(A) — A (L, A) is just zero! This is not therefore
the right way of introducing differential forms in the most general non commutative
framework. Nevertheless, we will see in Section 3 that it is possible to define for any
algebra A acomplex H*(A) called the Hochshild complex which plays in all cases the
role of the complex of differential forms. At alater stage (Section 4) we will introduce an
operator B on H*(A) which will play the role of the De Rham boundary. In the cases
where the algebra A has enough derivations, it becomes usefull to consider A(L, A)
, cf.[47].

3. HOCHSHILD (CO)-HOMOLOGY OF AN ASSOCIATIVE ALGEBRA
3.1. Motivations

In the simple case of «commutative geometry», we start from a commutative algebra
A (usually the algebra of functions over some manifold X ). We have already con-
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structed the differential envelope Q(A) but we should be able to construct also the
algebra A(X) of differential forms, in a way which can be generalized to the non-
commutative case (and therefore in a way which does not make explicit reference to
the manifold X ). Roughly speaking, as we shall sec below the Abelian groups A *(X)
will appear as the Hochshild homology groups H,( A) ofthe algebra 4 . There are sev-
eral equivalent definitions of Hochshild (co)-homology and it is useful to look at several
of them in order to read and use the existing literature.

3.2. Hochshild cohomology of an algebra A with coefficients in a bimodule M &

This definition is slightly too general for our purposes but it is standard. We consider
the space C"(A, M) of n-lincar maps T(a,,a,,...,a,) from analgebra A intoa
bimodule M (i.c., we know how to multiply from the left and from the right by elements
of A). Then we call (bT") the {n+ 1)-lincar map:

[bT1( a1, 0p1) =0,T(ay, .., 0, )+

9) +E(—l)iT(ax:~--saiai+1""van+l)+

i=1
+(=)™'T(ay,...,a,)a,,, .

It is easy to see that the operator b has square zero and we define the Hochshild
cohomology groups H*( A, M) as the cohomology of the complex C*(A, M) .

3.3. Hochshild cohomology of an algebra 4 &

This is the definition that we are interested in and it can be given cither as a particular
case of the previous one, or directly. As a particular case of 3.2, we may consider M
as the (algebraic) dual A* of A. Itisindeed a bimodule since if a,b € A and p € A*
we have apb € A* defined by (apb)(c) = p(bca) . Now, we may consider elements
TeC"AA%) as (n+ 1) linearformson A:

10) (ag,ay,-.-,0,) = [T(a,,...,a,)1(ay) €C.

Rather than defining the coboundary operator b in terms of T", we can therefore do
it directly in terms of 7:

(b7)(ags -1 0u 1) =T(agG,, 00, .0, 0y )+
i .
an +E(——])"r(ao,...,a‘«aﬂl,...,am1)+
i=1
+(=1D™"1(a,, a9,.--,0,).

As a particular case of 3.2, we call C™!(A) = C"(A,A*) and H*™*'(A) =
H*(A, A”) where we no longer mention the bimodule A*.
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3.4. Hochshild homology of A in the tensorial algebra &

We may consider n-linear forms on A as 1-lincar forms on A®", therefore, by
duality, we define the Hochshild homology operator 8 : A®™! — A®" a5

n-1

Blag®...®a,) =Y (~1)(ag,...® 0,0, ®...a,)+
(12) =0

+(-D™a,00®...®0a, 1)

Of course, the operator 8 has square zero and the homology groups are denoted by
H,(A).

3.5. Hochshild homology and cohomology of A defined in the differential envelope
Q(A)

Letusadd aunit 110 A andcall A = A+ C1 the unital extension of A. The
Hochshild homology of A can be defined as in 3.4, however, it can be shown [11] that
one does not loose anything by considering the subcomplex of ﬁn = AR A" gener-
ated by elements of the kind a;, ® a, ... ® o, where 1 can only be in first position.
This suggests that Hochshild homology of A can be defined directly within the dif-
ferential envelope ﬁ(A) (as it is done in [8]). Moreover, if we represent the element
agba, ...8a, of Q(A) by ay®a,...®a, , we see, using (1), than (4) is almost equal
to (12) except for the last flip-over term. The Hochshild boundary operator 8 can then
be defined directly as follows (compare with 2.4) in ﬁ,‘(A) . Let w be a monomial of
grade Jw and z anelementin A, we set

B(wbz) = (=1)%[w, 1)
B(z)=0.

13)

It may be useful to introduce the «flip-over» operator «
(14a) a(wdz) = (—l)a“'a:w.

Then 8 = B — o where B was introduced in Section 2.4. Notice that 8% =
B? = 0 but the homology of ' is trivial (as the one of &, and for the same reason,
cf. Section 2.4). We could think that the Hochshild coboundary operator b is defined
by taking the transpose B* acting on forms over the differential envelope; although this
is possible (and done by several authors), the cohomology that we would get is slightly
«too big» (in a sense we would be over counting the complex numbers: this comes from
the fact that it is enough to know the value of a form ¢ on elements ayéa; ...8a, ~
6o ® ay ... ® a, and not necessarily on 8o, ...8a, ~1®q¢;...®q,,with 1 € C).
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In such a case, it could be convenient to define in turn «reduced-Hochshild cohomology
groups.» Rather than doing that, we follow [7] or [8] and define the Hochshild complcx
as follows: first the Hochshild co-chains of degrec n will be those forms ¢ or Q"( A)
which vanish on the part 6Q2"(A) (remember that Q(A4) = ASQ(A) + 6Q(A)) ie
¢ o6 = 0, then the coboundary operator b is defined as the transposed of 8 restricted
to A6Q(A), e,

[ is a Hochshild cochain] < Vw € Q(A)p(fw) =0
(14b) [ is a Hochshild cocycle] < [ is a Hochshild cochain and
Yw € Q(A),[bpl(w) = p(B(ew)) = 0]

where ¢ is the projector of 2(A) onto AQ(A) . We wam the reader that the notation
H*(A) for the Hochshild cohomology groups is unfortunately not standard (some au-
thorscallit H H*(A) or H*(A, A*) yand H*( A) sometimes denotes the cohomology
of B (in which case H*(A) denotes the reduced Hochshild cohomology). Often one
saysthat ¢ is «closed» if it vanishes on 6§ ( A) ; it should be remembered that it means
«closed for 6 » and usually not for &. In what follows, we should remember that there
is a one to one correspondence between Hochshild cochains defined as (n+ 1) forms ¢
on A oras forms @ on the subspace Q" A of the universal differential algebra QA.
More precisely
plagbay ... 6a,) = p(ag,aq,...,0,)

where a;, # 1, ¢ > 0. We will usually not distinguish between ¢ and ¢.

When the algebra A is Z, graded, one can define as follows the Hochshild operator

n
(btp)(ao,al,...,an,aml)=E(—1)jcp(a0,...,a].aj+1,...,aﬂ+1)—
=0

—(=1)% Lo ¥iip(a,, aq, 0y, ... ,a,)

where da,; denotes the intrinsic Z, grade (0 or 1) of the element g, .

The Hochshild dimension of an algebra A is defined as the integer p (possibly infi-
nite) such that H*( A) = 0 if n> p. As we shall see later, in the case where A is the
algebra of functions on a manifold X , we have p = dim X .

3.6. Hochshild cohomology of the algebra of complex numbers

This is a continuation of the example started in Section 2.7. Using eq. (13) and calling
g = 8e (asin {8]), we find
ﬁ(e):ﬂ(q2ml)=ﬂ(eq2n+l)=0, nZO
Bleg®™ =eg®™ ',  n>1

B =Re—Dg@™!,  a>1.
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Therefore, at the homological level, we find immediately that Z, = C, Z,, =
0,Z5,.1 = By,,1 = C+ C and therefore Hy =C, H, =0, n> 1. Notice that, at
the cohomological level, one finds Z° = C, 22" = B?* = C+ C (or C if we use b
ratherthan B*)and Z2*! = 0 . Inany case,weget H®=C, H*=0, 2> 1.

As announced in 3.1, Hochshild homology should be thought of as the right gener-
alization of the concept of differential forms. The above result for the algebra A = C
should therefore not be too surprising in view of the fact that A is indeed the algebra of
functions over a manifold which is just a single point (its algebra of differential forms is
then essentially trivial, but in dimension zero).

3.7. Hochshild cohomology of the commutative algebra A = C*(X) where X is
a smooth manifold

When A = C*(X) , we already constructed the differential algebra (Q(A),8) .
However this algebra cannot be identified with the algebra exterior forms A*(X) -
although there exists a universal morphism from the former to the latter. Indeed Q (A)
is «too big», it is infinite-dimensional, whereas, taking for example X = R", we get
dim(A*X) = 2™ In other words, the kemel of the universal map is rather large. For
example, the following element B(w) is nonzero in Q(A) but its image in A(X)
vanishes.

w = ayba,60,804,

B(w) = [agba,ba,,a;]

ﬂ(W) =ao6016(0203) — a05(01a2)5a3+

+agay6a,6a; — agayba;ba, #0
but

apda; Ad(aya,) — gpd(a;a,) Adas+

+ aga;da, Aday —agaydog Ada, = 0.

As announced in 3.1, the complex of Hochshild homology groups H,_(A) should
play the role of the De Rham complex A*(X) of differential forms on X . At the
cohomological level, we have of course a dual situation and H*(A) will appear as the
complex of De Rham currents A_( X) . De Rham currents are, in a sense, distributional
forms [12,13]. They are the dual of forms. If C isacurrent and w is aform, then (C, w)
is a number. Notice that we should not talk (yet) of the «complex» of Hochshild groups
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since we have not (yet) defined any operator playing the role in the noncommutative
case of the De Rham exterior derivative d. This will be done in the next chapter. To
convince the reader that Hochshild cocycles indeed behave as De Rham currents, let us
first consider the action of 8 on the monomial f8g6h of Q2(A) . As we saw in 2.6,
this monomial can be thought of as a function on the manifold X x X x X vanishing
pairwise on contiguous diagonals:

[ f8g6h]1(x,y,2) = f(2)(g(y) —g(2))(h(2) — h(y))

B(f6g8h) = (—1)'[ £8g,h] = —f.6¢.h + h.f.bg

—f6(gh) + fgbh + hfbg

We get a function on X x X which reads explicitly

[B(f8gbh)](z,y) = — f(2)(g(y) h(y) — g(z)h(2))+
+f(z)g(x)(h(y) — h(x))+
+h(z) f(2)(g(y) — g(z)) =
=— f(2)(g(y) — g(2))(h(y) — h(z)).

A further action of the operator 8 would give zero as it should (the last term becomes
h(z) — h(z) ). Now let C be a two-dimensional De Rham current, we may associate
with it the following forms ¢ on Q2 — adistribution on X3 :

o( fégbh) = (C, fdg A dh);
from the known properties of d and A let us show that by = 0

[bp)(fO65'6£765%) = p(B(fO6f16f26f)) =
= o([f8f16f%, F°]) =
= p(f°81 657 ) — fO8(f F)6F+
+ 011652687 — 2651617 =
= (C, fOdf' Ad(f7 )
—(C, L2 Py ndf)+
+(C, Pl af* ndf?) — (C, f FPdf! A df) =
=0.
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More generally to any h-dimensional De Rham current C, one associates the fol-
lowing Hochshild cocycle v € Z*( A) (a distribution over X**1)

(15) o(fO8f1...61%) = (C, fOdf' A...AdfF).

Conversely, given an element in H*( A) , we choose a representative ¢ and define
the De Rham current C as

(16) (C oA A Adf) = 3 e (085D L 5f7R).

oEp;

(For a more refined and detailed treatment, cf. [7]). Considering ¢ as a distribution
on X**1 we could also denote (%867 ...6f*) by an expression like

[ #a0s sz 20 (@) o fheap) ] ot

and eq. (16) shows that the support of ¢ is contained in the diagonal of X*+! .

3.8. Hochshild (co)homology of the algebra A (X) of differential forms &

In the last subsection, we saw the Hochshild homology of the commutative alge-
bra C>(X) was related to the set of differential forms A (X)) ; but this set, endowed
with the laws of addition and exterior multiplication is itself a noncommutative (and
Z,-graded ) algebra. It is therefore natural to study its own Hochshild (co)-homology.
Let us remember (Section 2.5) that when the algebra A under study is Z,-graded,
one may construct two kinds of differential envelopes: the Z,-graded one («superen-
velope») and the nongraded one. In the Z,-graded case, it is natural to define the
Hochshild operator 3, not by eq. (13) but by the following:

amn Blwéz) = (~1)*[w,z],
with
[w,z], = wz — (—1)970% 1)

where the commutator has been replaced by the graded commutator [8]. The corre-
sponding (co)-homology is the called Z,-graded Hochshild (co)-homology but to be
consistent with the physicists’s tradition we should call it «superhomology». Actually,
one also introduces in the case of the algebra of differential forms, a Hochshild «hy-
perhomology» which uses the fact that A(X) is not only an associative algebra but a
differential algebra, so that Q (A (X)) can be equiped with two kinds of differentials
(d and §). The Hochshild hyperhomology of the algebra of differential forms is re-
lated to the usual homology of the free loop space of X which plays an important role
in string theory. We refer to {14-16] for more details.
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3.9. Remarks about differential forms in a noncommutative context

1) In the commutative case, calling A = C*(X), X being some manifold of
dimension n, we know that the space A(X)(z,) of differential forms at the point
z, € X had dimension 2*. Since A(X) ~ H(A), we may usc H(A) to define
dim X indeed AP(X) =0 if p > n. Asin3.5,if A is noncommutative, we define
the Hochshild dimension of A as the integer n such that HP(A) =0 if p > n.

2) If A is an algebra, then the set of m x m matrices with elements in A is also
an algebra (all the algebra we arc dealing with are supposed to be associative) and it is
natural to ask what the Hochshild cohomology of M,(A) is. It can be proven that it
is just the same. This suggests the definition of «Morita-equivalence»: two algebras A
and B will be equivalentif A® K ~ B ® K where K is the algebra of compact
operators on a Hilbert space. A ® K can be thought of as a space of matrices of any
size with coefficients in A .

3) The previous remark tells us in particular that if A is a complex Clifford algebra
associated with a nondegenerate scalar product, then H,(A) = C if x = 0 and O
if *+ > 1. Indeed, we know that A is isomorphic to a matrix algebra over C (or
over C+ C) , then, by Morita-equivalence H,(A) = H (C) and we use the results of
Section 3.6.

4) Notice thatif f,g,h € A,and f' = f+ (gh — hg) , then, bf' = bf = since
gh — hg = b(gbh) by eq. (13). Therefore, one always has Hy(A) = A/[ A, A] where
A is the subspace of A spanned by all commutators in A (graded commutators if we
are inthe Z,-graded case).

5) In the case where the algebra Der A of derivations of A is not zero, we have
definedin2.9 a space A (Der A, A) of exterior differential forms. The reader is invited
to notice the differences between its definition and the construction of H(A) ; both
notions are intimately related when A = C=(X) .

6) Notice that we do not know yet what is the noncommutative analog of the De
Rham boundary operator § on currents {or, from the dual point of view, the analog of
the De Rham coboundary operator d on forms). In other words we do not know yet
how to define De Rham Cohomology in a noncommutative set-up. The answer is Cyclic
Cohomology and is the subject of the next section. The non commutative analogue of
9 will be called B.

4. CYCLIC COHOMOLOGY

When A = C=(X) , De Rham cocycles are in particular (equivalence classes of)
differential forms w and since H(X) ~ A(X) itis therefore natural, in the noncom-
mutative framework to try to define cyclic cohomology as a subcomplex of the Hochshild
complex (or, at the homological level, as a quotient of the Hochshild complex). Actually,
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there are other equivalent definitions that will be given below.

4.1. The cyclic subcomplex of H*( A)

Notice that the cyclic group of order n+ 1 acts on the space of monomials of the kind
ag®a, ...®a, (cf. construction No. 2 of Q (A) inSection 2.3) via g, ®q, ...®a, —
¢,®aq ...Qa,_; . Following [7], letus define the cyclicity operator A as (—1)" times
the generator of the cyclic group (4) acting on ﬁ(A) ie,

(18) Megba; ...8a,) = (—=D"a,b048a,...60, ;
and, more generally
(18" Mwbz) = (D260, z€4, wel(A.
At the dual level, the operator )\ acts on forms ¢ on fi(A) as folows:
19) Dol(w) = p(w).

When A is Z, graded, and if we express ¢ as amultilinear form, the same operator

A\ acting on ¢ can be written as follows
»-1
[3e)(ag,ay,.-.,0,) = (=1)P(—1)2Xia ®p(a a0, .. a, )

Notice that (18°) implies A(6a,...6a,) = (—1)"a"62czl8cz2 ... = 0. The form
@ s said to be cyclic if poX = . Notice that if ¢ is cyclic, it vanishes over el-
ements of the kind 6a, ...8a,, it is therefore automatically a Hochshild cochain (of
Section 3.5 and eq. (14)). It is therefore natural to study the restriction of the Hochshild
coboundary operator b to the space of cyclic forms. The main observation is that if ¢
is cyclic, so is by (use egs. (13), (14) and (19)): the set of cyclic forms is a subcomplex
of the Hochshild complex and its cohomology is called cyclic cohomology and denoted
H}(A) (orsometimes HC*(A) ). Being a subcomplex, it may be that H} isnot trivial
evenif H* is. The graded commutator in the Z-graded algebra Q (A) isdefined as
follows: [wy,w,], = wywy — (=) #1824, 0w, . Notice that if ¢ is a cyclic cocycle it
vanishes on §Q2(A) . Now, from the definition of b (and 8), we see that it vanishes on
graded commutators of the type [w,z],, z € A, but also, using cyclicity, it vanishes
on graded commutators of the type [w,§z], , and therefore on all graded commutators.
It is not too difficult to show that these properties characterize the cyclic cocycles. In
other words, we could have defined the cyclic cocycles of degree n as graded traces of
dimension n on the algebra ﬁ(A) that vanish over 55(A) . (A graded trace being
by definition a form vanishing over graded commutators.)

(4) The reader should be warned that, in ref. [7], the symbol )\ denotes the cyclic permutation,
without the sign (—1)".
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4.2. Cyclic homology &

Of course it is possible to define a dual theory at the homological level; however, since
the cyclic complex is a subcomplex of the Hochshild complex at the cohomological level,
it will appear as a quotient at the homological level (5). Specifically, the cyclic chains
will appear, as elements of A®™! /(1 — X\) A®™! | In the next sections, we will stay
at the cohomological level rather than homological because the calculations are usually
simpler. Before ending this subsection, let us mention that whenever one can define
cyclic objects in a category [18], i.e., whenever we have a simplicial complex X, (with
face and degeneracy maps) and an extra structure given by an action of the cyclic group
of order n+ 1 on X, , one can define not only the Hochshild homology of the complex
but also its cyclic homology [18, 14, 19]. This general technique leadsto H,,(A) when
the cyclic object (called A in [18])is built out of an algebra A by taking X, = A®™! .

4.3. Cyclic cohomology and the Cuntz algebra Q(A) @

In Section 2.8 we introduced the Cuntz and Zekri algebras. (J(A) and e( A) . We
will indicate now how they can be used to describe cyclic cohomology. Indeed let T" be
atrace on Q(A), then define p(w) = T(dw) if w € Q(A) isevenand p(w) =0
if w is odd. Let us show that ¢ is an (even) cyclic cocycle on A [20]. Assume w and
w' even, then

plww') = T(8(ww")) = T(g(ww’)) =
= T(qu.w' + w.qw' — qu.qu’) =
= T(w .quw+ quw'.w — qu.qw’) =
= T(w'bw + (wHw)) = T(S(w'w) =

= p(w'w).

One has still to consider the case w,w’ odd (one finds the same result) and the mixed
case (then p(ww') = 0 ). Besides, the fact that ¢ is closed for § is obvious. Therefore
¢ is indeed an (even)-graded trace on Q(A) vanishing on 8£(A) , hence a cyclic
cocycle. One can show {23] that the even cyclic cohomology can be reconstructed from
the study of traces on QA . It is nice to remember that things are sometimes nicer in

(5) Notice that if we had started with a bigger Hochshild complex (cf. Remark at the end of 3.5)
without assuming o6 = 0 and defined therefore subsequently a reduced Hochshild cohomology,
there would be no need to define a reduced cyclic cohomology because of the property ¢ cyclic
— o6 = 0 . The structure is quite the opposite at the homological level (where there is no need
to define a reduced Hochshild homology but where some authors introduce a restricted cyclic
homology [11]).
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terms of (Q(A),q) than in terms of (22 (A),6) : in the present situation, we do not
have to assume Sy = 0 and we replace graded traces by traces. The relation between eA
and the odd-dimensional cyclic cohomology is similar and is studied in {23]. Notice that
the above establishes a relation between n-cocycles and traces on the ideal of Q(A)

spanned by elements z°¢z'...gz" and qz!...qz"™; therefore one could be tempted of
studying traces on the whole of J( A) , not only on a particular ideal, such traces would
define cocycle for each (even) n. Pursuing this idea leads to the definition of «entire
cyclic cohomology» and we will come to it in Section 7.

4.4, Cyclic cohomology via mixed complexes &

Let ( M, b) be acochain complex (with 4% = 0, b of degree +1) and ( M, B ) achain
complex (with B2 =0, B ofdegree —1); moreover, we assume that bB + Bb= 0 .
Such an object (M, b, B) is called a mixed complex. To each mixed complex, we may
associate a chain complex (2 M, A) as follows:

BM"=’M”€BM"‘2 @Mn—A ®...
A=b+B.

Itis clear from the above that A2 = 0 andthat A maps BM™ into BM™! . By def-
inition, the cyclic cohomology of this mixed complex is the cohomology of (ZM,A) ;
[11, 21]. In order to justify the terminology, one has to show how such a mixed complex
arises naturally in the universal differential envelope of an algebra A and to prove that
the cyclic cohomology defined here coincides with the one defined in 4.1. More details
will be given in 5.3.

4.5. The operators B, and B
The non-antisymmetrized boundary operator B,

Let A be aunital algebra withunit and Q (A) its differential envelope (if A is not
unital, we add a unit). Let ¢ be a normalized (6) Hochshild cochain indegree n+1 ;it
can be considered as alinear form on Q ( A) which canbe writtenas p(a%,a!,...,a™!)
= p(a%8a'...6a™1),a' # 2,i > 0,2 € C. Then B,y is the n-cochain defined as
follows:

(20) (Bop)(a®,...,a™ = p(1,a°,...,a").
(6) We remind the reader that a normalized Hochshild cochain is a multilinear form on the space

of (ag,a1,...,a,) which vanishes whenever a,,7 > O belongs to the image of the algebra of
complex numbers in A .
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More generally, if w denotes an arbitrary element in Q (A) , we may define B, as

@1 [ Bypl(w) = p(8w).

The cyclicly-antisymmetrized boundary operator B

Let us first introduce the operator A of cyclic antisymmetrization which is defined
as (7)

(22) A=1+X+X+...+X" on Q4

with A\ asineq. (18). At the dual devel, let us also call A the operator (Ap)(w) =
@(Aw) . The coboundary operator B is then defined as B= 64 in Q(A) ie,

(23) B(agba, ...6a,) = > (~1)"(ba,8a;,, ...8a,80, ...8a, ;)

=1

or, at the dual level, as B = AB, , ¢,

(24) (Bp)(w) = p(Bw).

It is now just a matter of algebraic manipulations to show that B> = 0 and that
Bb = —bB . The reader should for instance compare Bb(w) and bB(w) , with w =
agba,ba, . Notice that B and B, arc operators of degree —1 . We are therefore in
the situation of Section 4.4: calling C" the space of Hochshild cochains in dimension
n (ie., the space of forms ¢(a’,...,a")) . Wesee that (C,b, B) is amixed complex.
The definition of the operators B, and B in the unnomalized Hochshild complex is
slightly more involved. One has to set

(Byp)(a®,...,a™) = p(1,a°%,... 0" — (=™ p(a’,...,a", 1)

Then one sets B = AB, as before. But, since only normalized Hochshild cocycles
(where 1 can only appear in first position) have a nice interpretation in terms of the
differential algebra Q( A) , we will not use this.

Before ending this paragraph let us mention one useful property of the operator A
which is a direct consequence of its definition (eq. (22)): If 7 is a cyclic n-cocycle,
then A7 = (n+ 1)7. We will return to the study of the properties of the operator B in
5.5 but meanwhile, we are ready for studying a few examples.

(7) The definition of A involves a sign, cf. footnote 4 in sect. 4.1
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4.6. Examples
4.6.1. Cyclic cohomology of the algebra of complex numbers

This is a continuation of the examples in 2.7 and 3.6. The cyclicity condition ¢y A =
¢ imposes ©(g>™!) = p(eg?™!) =0 and p(g*") = 0. Therefore, in the odd case
there are no nontrivial cyclic cochains:

2+l _ 72n+1 _ n2ntl _ pp2n+l _
cl = gl = gIml = g2l -,

In the even case, we get C2™ = C since p(eq?®) is not determined. The condition
by = 0 does not bring anything new in this case since

bo(g*™') = p(Bg*™!) = 0

and

bp(eg®™') = p(Beg®™') = 0.

Therefore all cyclic cochains are cocycles C2" = Z2"(= C). Moreover, if ¢ €
C?*!, ¢ is zero (and by = 0 ). Therefore B2" =0 and H?™ = C. The cyclic co-
homology of complex numbers is periodic modulo 2. Notice that Hochshild cohomology
groups are essentially trivial (but in dimension 0}, but cyclic cohomology groups are not.

4.6.2. Cyclic cohomology of the commutative algebra A = C*(X)

This is a continuation of the example 3.7. Let us call ¢l (standing for «classical») the
universal morphism from Q(A) to A(X) . It is instructive to consider the following
cases:

B(agba,6a,) = 6ay6a,8a, + 6a,8a,6ay + ba,6ay6a,

cl(B(ap6a,8a,) = 3day Ada, Ada,
and

8(00601602603) = 500601602603 — 601602603600+

+ ba, 60560460, — ba3ba,6a,6a,

cl(B(apba,6a,6a4)) = 4day Aday Aday Aday.
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It is clear that B appears as the generalization of the De Rham coboundary operator
(actually By is enough in this case because of the antisymmetry of A).

At the dual level, cyclic cohomology will appear here as the De Rham homology of
currents. Let C be a k-dimensional current and o a (k — 1)-form, then (C,do) =
(0C,0) where § is the De Rham boundary for currents. Let ¢ the Hochshild cocycle
corresponding to C (considered as a graded trace of dimensionk on Q( A4) , i.e.

(25) o(fO8f1...8f%) = (C, f°df' A... A dFF)
Then,

(8C, 12671 .61y = (C,df*df* A... Adf*) =

(26)
= (Bop)(fP6f...8f%)

However, the correspondance between cyclic cohomology of degree k and De Rham
homology of degree k is not one to one. Indeed, let ¢, be a k-dimensional cyclic
cocycle, it determines a De Rham current C (by eq. 16) which s closed. But, intum, C
determines a cyclic cocycle ¢ by eq. 25. The problem is that the class of ¢, — ¢ is zero
in H* butnotin H¥ . In other words, although ¢, — ¢ isanontrivial k-dimensional
cyclic cocycle, its image under « Cl » (the «classical» homomorphism) is trivial. One
can show that, in this case, there exists ¥ € Hf~% and an operator S, from H{~?
to HE suchthat (p, — ) = Sy. We will retumn to the definition of § in the next
section. However, 1 is not determined uniquely and, again, one can find ¢, € H f“z
such that Sy, = Sy with ¢, — ¢ = Sy forsome 7 € Hf‘4 . etc. The result is
that foreach k£, H f is isomorphic to Kerd (in the space of k-dimensional currents)
GH, ,(X)® H, ,(X)®... where H, denotes the De Rham homology of X .

4.6.3. Z,-graded cyclic cohomology of Grassman algebras

Let us consider for example the algebra A C? generated over the complex numbers
by the elements 1,a,b, with the relations a? = b*> = 0 ,ab = —ba. This algebra is
clearly Z,-graded (we give an intrinsic grade 1 to the odd generators o and b). We
will therefore consider the Z,-graded cyclic cohomology of this algebra (super-cyclic
cohomology!) —f. sect. 2.5 and 3.8.

At the lowest level, a zero cochain ¢ should satisfy the relation bp(ay,a,) = 0,
but, by definition of b, this is nothing else that the graded commutator of o, and
a, . This graded commutator always vanishes since the algebra is graded commuta-
tive. Therefore, Hf is generated by the classes of the linear forms ¢, , v, .9, » @b
where p_(y) = 1 if £ = y and 0 in the other cascs. Notice that ¢ b is the Berezin
integral (defined up 1o scale) associated with this set of gencrators. We can write HY =
C2®C? . 1t is convenient to single out the cohomology of the subalgebra of complex
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numbers (generated by the element 1) and write H f = C & CA®C?. Atthe next or-
der, we observe that cyclicity (o) = ) imposes the following constraints. ¢(1,1) =
—p(1,1),0(1,0) = —p(a,1),p(1,0) = —p(b,1),p(1,ab) = —p(ab, 1), p(a,b) =
e(b,a),p(a,ab) = —p(ab,a),p(ab,ab) = —p(ab,ab) . This implies in particu-
lar that ¢(1,1) = (ab,ab) = 0. Also the Hochshild condition by = 0 implies
©(1,ab) = 0 ; this comes from {bp](1,a,b) = 0,indeed [bpl(1,a,b) = (a,b) —
w(1,ab) —(b,a) = —p(1,ab) . The Hochshild condition also implies ¢(1,a) =0,
this comes from {bp](1,1,a) = 0. In the same way ©(1,b) = 0. The space
of cyclic cocycles is therefore generated by three even cocycles ¢;, ¢, , p; and
two odd cocycles ¢, and ¢s which do not vanish only on the following arguments:
v1(a,a),p,(b,0),03(a,b),p4(a,ab) = —p,(ab,a),ps(b,ba) = —ps(ba,bd).
Since, from the other hand the space of 1-cyclic coboundaries is clearly zero, we get
H}! = C*®C? . One could compute in the same way HZ, H} etc. Actually, there is a
shorter way which uses the result of the Z, graded cyclic cohomology of A C along
with a Kunneth formula [33]. Before stating the general result, let us notice that, the
complex H; being Z,-graded, it is convenient to introduce a Z,-graded Poincaré
polynomial. When V* is a Z-graded and Z,-graded vector space, one defines the
following polynomial. P(V*)(t) = Z (dim(V")* + 6dim(V™)~)t" where 6 is
the generator of Z,(9? = 1. The general result for the Grassman algebra AC" is
HY(AC") = H{(C) + V* where the first term denotes the cyclic cohomology of com-
plex numbers (cf. section 4.6.1) and where the second term is a graded (and Z, -graded )
vector space whose Poincaré polynomial is

P =[27"1(1+8) — (1 =) I/I(1+t)(1 —1)7]
One finds, [33], that in the case of AC,
P)y=0+0/(1—t)) =0+t+0> +t>+0t* + > + ...

In the particular case of AC? , we get P(t) = (1+20) +(3+26)t+(3+46)t* +
(5+ 86)t? + ..., in accordance with our previous explicit calculations (notice that, at
order 2, the cohomology willbe H? = C @ C*®C*

The Z,-graded cyclic cohomology of Clifford algebras G(n) is actually much sim-
pler. One proves [33] that H} is generated by 7,57,5%7,8%7,... where 7 is the
graded trace determined by 7(v;7, ...7,) = 1 and 7 (other generators)= 0 . For in-
stance, in the case of the algebra G(4) generated by the symbols «;,1 = 1...4 , with
the relations 47 = 1,7y, + 7,7 = 0,1 # j, one can check that Z) = C is gener-
ated by 7 with 7(1) = 7(7y;) = 7(%7;) = 7(%9%) =0 and (v p13%) = 1.
At the next order Z} = 0. Then Z? = C is generated by ¢ = 1/(2im)S7 with
o(a,b,c) = (=1) if abc = 1717737 and O in the other cases. Notice that if
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weset I} = 4,,T, =, and I} = n,,I, = 4, then n = 1/2T, + iT,) and
f = 1/2(T, + i[;,) generate the Grassman algebra AC? . It is easy to check that
e(n,m, %) =0,0(7,m,m =0,0(71,9) =0 if X € C,but o(n7,n,%) #0 since
the product n7n% contains a term of the kind ~y,~,7v3, - This could be used as another

way of studying the propertics of the Berezin integral.

5. CYCLIC COHOMOLOGY, PERIODICITY AND COBORDISM IN NON-
COMMUTATIVE GEOMETRY

5.1. The periodicity operator S

In the rest of this paper we use cohomology rather than homology but it should be
understood that there is an analogous theory at the dual level. Let A and B be two
algebra. Then, in general Q(A® B) # Q(A) ® 2(B) but we get a natural homomor-
phism m from the first into the second because of the universal property of Q(A® B)
of Section 2. Let ¢ € C"(A) and ¢ € C™(B) be two Hochshild cochain, they can
be thought of as linear forms ¢ and 17) on Q(A) and Q(B). Their cup product
(p#1 ) is a Hochshild cochain (of degree n+ m ) defined by (p# 9y = (¢ ® 12))7r .
These formal considerations get simplified if we take B = C (the complex numbers)
and if we take for ¢ the 2-cocycle 7 which generates the cyclic cohomology of the
algebra C (cf. Section 4.6.1); we can choose 7(e,e,e)(= 7(ebebe)) = 2im. Re-
member that we call C" the Hochshild cochains and C}' the cyclic cochains. Then
T € C™21(AQ®C) = C™%(A) when A isa complex algebra; we therefore get
a map from C"(A) into C™?(A). One can prove that if ¢ and ¢ are Hochshild
cocycles, then # 4 is still a Hochshild cocycle. Actually, the map of interest, called
S (cf. [7]), is gotten by restricting our attention to the cyclic subcomplex C7. Let
v € CT(A) ,then Sy is defined as:

1
(28) S(p— mA(gO#T)

where A is the cyclic symmetrizer introduced in eq. 22.

Facts about the operator S (cf. [7]):

(i) Smaps CP into CP*? ; (in particular Sy is still cyclic).

(i) If ¢ is a cyclic cocycle (ie. ¢ € Z§,ie. bp = 0)then Sp € Z*? and
S = p# 7 (this explains why we introduced the coefficient 1/(n+ 3) and the opcrator
A in the general definition of S ): the image under S of a cyclic cocycle is a cyclic
cocycle.

(iit) If ¢ is acyclic coboundary (ie. p € B} ,ie. ¢ = by for ¢ € C;"l ) then
Sy is also a cyclic coboundary: Sy € B2 . More precisely

1
nt Sty for ¢ € CY.

29) bSY = n+3
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(iv) From the above we have that S induces a map (also called S') from the cyclic
cohomology groups HP — HI*? .

(v) If we represent cyclic cochains as linear forms ¢ on Q(A), we have the
following explicit writing for S¢: let w € Q,_(A) , then

247
n+ 3

(5¢)(w) = P(SAw)

where A isdefinedineq. 22 and S is defined as follows
S(apba;...6a,,.,) = aya,0,804...6a,,,+
n+1
(31) + X:(aoéa1 ...6a,_1)(0;0,,1)(6e;, ... 60,,5)
1=2
S(ao) = S(aosal) = 0

This is actually an alternative for the abstract definition eq 28. If ¢ isacyclic cocycle
(b = 0 ), we may remove both 1/(n+ 3) and the operator A in the above formula.

(vi) We saw in (ii) that if ¢ € Z7 then Sy € Z{‘*z but moreover we can show
that Sy is also a Hochshild coboundary: Sy = by (not a cyclic coboundary since ¢
is usually not cyclic). This property can be checked by taking

(32)  P(a’,...,a™") = 2in Y (~1)7p((a%8a’ ... 807 ") 0’ (807" ... 6a")).
j=1

The operator S is sometimes called the periodicity operator or the suspension oper-
ator.

5.2. Relation between the operators 5,8 and S &

The following results come from algebraic manipulations involving the definitions
of b, B, B, and §; we refer to [7] for the details and the proofs.

(i) The image under B of a Hochshild cochain is always cyclic moreover the map
is onto (but not one to one);: BC™ = O’f‘l .

(i) The image under B of a Hochshild cocycle is a cyclic cocycle (it is cyclic
because of (i) and a cocycle since Bb = —bB ). Morcover it also lies in the image of
B, (the precisc relationis BZ™ = ByZ" N Z3").

Notice that a given cyclic cocycle 7 can a priori be written 7= By, where ¢ € C®
because of (i); howeverif 7 ¢ By Z" it cannot be written as By with p € Z" C C?
because of (ii). If we start with a given cyclic cocycle 7 € ZA‘1 , we may distinguish
2 cases 1) 7 € ByZ", then, because of (ii) it can be written as 7 = By for some
w € Z™. Then w = bp = 0 and defines the same cohomology class (zero!) as
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Ste B¥! C 23! . 2) 7 ¢ ByZ", then, because of (i) it can be written as 7 = By
for some ¢ € C" (actually it can also be written 7= B¢ forsome 4 in C"). Then
w=bp € B™! C Z™! and we have 2 subcases. 2a) Case where 1 is a cyclic cocycle:
w € Z,;\H (it has no reason to be a cyclic coboundary since ¢ is not cyclic a prioni).
In this case one can show that w defines (up to a scalar factor), the same cohomology
class as S7; more precisely [ SBe] = 2inn(n+ 1){bp] . One could even choose an
element ¢, in C" such that the identify holds at the cocycle level. 2b) Case where w
is not cyclic: w ¢ Z7*! . Then, in any case w € kerbnker B (bw = b = 0 and
Bw = Bbp = br = 0 ) and, in this situation, it is possible to «correct» it: one can find
canonicaly & in the same Hochshild cohomology class as w such that & is cyclic {7,11
p-121]; then, again, { S7] = 2imn(n+ 1){@] in H;‘” . More precisely, one proves
that ker bNker B = Z, + b(ker B) , therefore one writes w = @ + by where 1,
determined by the equation (1 — M)¢ = Byw, belongs to KerB + Z" C C" then
by € b( KerB) . This last remark will be used in Section 6.
The following diagram may help to remember the above relations (in case 2a).

Z;'” w = ST
b
/ s

S

z" v /
NS
B

Z;‘"l T

The previous results suggest that, at the cohomological level, one may write
S:HM' - HP?' as S=2inn(n+ 1)bB7'.

This is indeed true and will be precised in the following section.

5.3. The Connes sequence

Since B maps Hochshild cochains onto cyclic cochains, it also induces a map at the
level of cohomology groups: B maps H* into HY. Also, the operator S maps Hy
into Hy (actually H} into Hj\"‘z ). Finally, a cyclic cocycle is in particular a Hochshild
cocycle and we have therefore a map 1 (inclusion) from Hj into H*. Itis tempting to
consider the triangle

H; 5, H;
B I
AN v
H*
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The nice thing is that this triangle is exact (the image of any of the three groups ap-
pearing in this triangle under the corresponding map is the kemel of the following map),
in other words, we have an exact couple (for elementary properties of exact couples,
cf. [22]). The simplicity of this result relating Hochshild to cyclic cohomology should
not make the reader think that the proof is simple: it is probably one of the most dif-
ficult technical points of the theory. The result encodes some of the properties already
mentioned in 5.2; notice that it implies that SB=IS=BI=0.

Since H* = @, H" and H; = ®,H}, and if we remember that S increases n by
2 and B decreases n by one, we may restate the above result by saying that we have a
infinite exact sequence:

“_’Hn_)Hn—l S n+l IHn+1 BHn
Notice that if n > (Hochshild dimension of A —f. 3.6.), H™ = 0 , then, we have:
0 - H'SH 5 0;

this shows that H ,\“’ and H} are isomorphic (periodicity modulo 2) under §.

The above result justifies the following definition: We define the periodic cyclic co-
homology of the algebra A (groups denoted by Hp,, ) as the inductive limit of the group
H, under themaps S : H} — HJ*? . These groups were actually «De Rham coho-
mology groups» in [7], [8] but this terminology is slightly confusing and anyway, the
new terminology, as well as the notation HJ seems to become standard.

Since we have an exact couple, it is clear that IB : H* — H* issuchthat (IB)? =
I(BI)B = 0, therefore one gets in this way a derived couple

where A, = S(HY) and E, = Ker (IB)/Im(IB) : One can then build a sequence
of derived couples (A, E,,). The corresponding spectral sequence {E,} whose first
term is B, can be shown to be convergent. The reader unfamiliar with spectral se-
quences should skip the next subparagraph and just remember the definition of F, and
the definition of Hp,, given above.

We already introduced mixed complexes in Section 4.4, it is clear that (C*, b, B)
where C* denotes the space of Hochshild cochains is a mixed complex. We find a
double complex associated with it as follows ([7]): We define C™™ = C* ™, then, if
p e CP™ , we set

1

d1<p=(n—m+l)b<p, d2<p=m

Be.
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One can then consider two possible filtrations (and two spectral sequences); the initial
term E, of the spectral sequence associated to the first filtration is zero and does not
converge in general but the second filtration is convergent (towards the associated graded
complex) and actually coincides with the spectral sequence associated with the exact
couple. The cohomology of the double complex depends only upon the parity of n onc
finds H"(C*,d; + d,) equal to HZ™ (= @, HLT) if nisevenorto Hi =
O, HAZM! if n is odd.

5.4. Cycles over an algebra and noncommutative cobordism

The rather formal developments of the preceeding sections should not cloud the
fact that a cyclic cocycle is, roughly speaking, a noncommutative generalization of
the symbol « [ ». Indeed, if M is an n-dimensional manifold without boundary and
fosf1,... f,, are (n+1) functionson M (elementsof A = C(M) ), we may calculate
the number

/ fodfi Ndfy A Adf,.
M

The operator | v appears as acyclic cocycle forthe M algebra A and, as discussed
in Sections 4.1 and 4.6.2, it appears also as a graded trace on the universal differential
algebra Q( A) vanishingon §Q(A) (soaclosed graded trace for 6 ). It finally appears
as a closed graded trace of the graded differential algebra A(M) = Sp-o AP(M) of
differential forms on M (this is not a surprise since €(A) is universal). This last
property motivates the following generalization.

A cycle of dimension n over an associative algebra A is a graded differential algebra
A = @) (AP with differential d along with a homomorphism AﬁAO and a closed
graded trace [ from A" into C (the adjective closed referring here to the property
fdw=0,Vw e A™"). Withsuch a definition, it is clear that (A (M), f},) isacycle
of dimension n over A= C(M) when M isasmooth manifold without boundary of
dimension n; more genecrally, in the case where M has non trivial homology one can
construct other cycles.

Given an n-dimensional cycle, we shall define (as in [7]) its character by the follow-
ing (n+ 1 )-linear functional on A :

(32) a?,...,a") =/<p(a°)dp(a‘)...dp(a")_

It is almost clear (and anyway true) that it is equivalent for a ( n+ 1 )-linear functional
7 on A tobe

(i) acyclic cocyle,

(i) aclosed graded trace on Q(A) ,
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(iii) the characterof acycle (A, f Yover A. As we shall see later, this last charac-
terization of cyclic cocyles is one of the most «operational» since it allows us to build
them explicitly.

In our previous analogy with «commutative geometry», we used a manifold without
boundary since we wanted to write (using Stoke’s theorem)

/dw=/ w=0.
M aM

When oM # 0, we should consider two differential algebras, namely A (M) and
A (3M) that we may call A (M) . In the noncommutative set up, on [7] is therefore
lead to the following definitions:

We first consider a triple (A,3A, [ ) where A and QA are differential algebras
of dimensions n» and n— 1 [and f a non closed graded trace on A J; in order to
mimic what we have in the commutative case (a p-form on M defines also a possibly
vanishing p-form on dM ), we assume that we are given a subjective morphism r :
A — JA , in the present case, we cannot assume that f dw vanishes when w € A™!
but we may impose that f dw = 0 whenever w € A™! is such that »(w) = 0.
Moreover we define a graded trace [' or A by [w’' = [dw forany w € A™!
with (w) = w'. Suchatriple (A,dA, [) along with the morphism r will be called
a chain; by the boundary of such a chain we will mean the cycle (JA, f .

We are now ready for the definition of noncommutative cobordism. Two cycles A, ,
A, over the algebra A (with homomorphisms p, , p, ) are cobordant if there exist a
chain A with boundary (A, @ A,, [, — [, ) and a homomorphism p : A — A such
that 7.0 = (py,p;) . One could check that this is an equivalence relation. It is not too
difficult to prove that if 7; and 7, are the characters of two such cobordant cycles over
A,then 7, — 7, = Byyp where p(a®,...,a™!) = [p(a®)dp(al) ...dp(a"). There
is more: one can prove using 5.2 (ii), the following theorem: two cycles over A are
cobordant if and only if their characters 7; and 7, are suchthat r, — 7, = Bt where
¢ € H*1(A). The group M*(A) of noncommutative cobordism classes over A is
therefore equal to the vector space Hy/Im B . Another interpretation of this group will
be given in the next section (§5.5).

Before ending this section, let us mention that, later, we will allow = to be infinite
(infinite dimensional cycles), then yielding functional over Q( A) - via their character
— and related to entire cyclic cohomoogy (cf. Section 7, 9.7 and 10.5).

5.5. The cohomology of De Rham-Karoubi &
Denoting as usual by (Q A, §) the universal differential envelope of A, we may
notice that the space

[QA4,Q4],2 37 1Q,4,2A4]
pg=n
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isstable under 6 and itistempting to consider the cohomology of the complex (A *€2, §)
where A"(QA) = Q A/IQA,QA], : thisis the cohomology of «De Rham-Karoubi»
introduced in [6]. It is sometimes called noncommutative De Rham cohomology but
this name should be avoided because too many different cohomologies defined in the
context of associative algebras coincide with the usual De Rham cohomology in the
particular case where A = C(X) ). At the dual level, one can define the homology of
De Rham-Karoubi as the homology of the complex A QA of (graded) traces on Q A
under the operator &' — the transposed of § —. It is shown in [7] — see also [11] - that
the homology of this complex coincides with the group M*( A) of cobordism classes
over A introduced in the previous section.

5.6. When A is abelian: the complex of Kdhler-De Rham &

When A is an abelian algebra, it is standard to consider the following complex (we
discuss it here just to show that its definition requires commutativity and to wam the
reader who could come across this complex that it comes from a different construction).
Letus call QA = A(QA) = Q,A4/[A,Q, Al ; notice that QA is a A-module,
then Q, A is defined as the exterior differential algebra of Qk’A (one may introduce
an interior product as usual). The cohomology of (£,A,65), when A is abelian is
the cohomology of Kahler-De Rham. Notice, that, by universality of Q A, we have
a surjection QA — Q,A (which vanishes on [£2 A, A]) we therefore get also a
surjection from AQ(A) onto £,A which is actually an isomorphism in degree O and
1. It is an isomorphism in degree > 2 if and only if [£2 A, Q A] is a bilateral ideal of
QA [11].

6. POSITIVE COCYCLES &

We already mentioned in 4.3 that traces on the Cuntz algebra A lead to cyclic cocy-
cle: if ¢ € Z}, n even, then there exist atrace T" on (A such that o( a’,...,a™ =
T(qa’ ...qa"™) . More generally we could consider multilinear maps w defined by

wm,(ao,...,a") = T(aoqa1 ...qa")

A careful study would reveal that such maps w are such that bw = 0 , are not cyclic
in general but are such that Byw is invariant under the action of the cyclic group. In
the case where A has a * operation (same thing for QA ), it is natural to study pos-
itive traces T" on QA ie. T(w*w) > 0 VYw): they will correspond to some spe-
cial (noncyclic) cocycles that have been christened «positive cocycles» [23]. From the
physical point of view, it is natural to be particularly interested in positive function-
als (bearing in mind the probabilistic interpretation of quantum mechanics). From the
mathematical point of view, if T is a positive trace, one can then build a scalar product
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{o, B} = T(eB*) and get an Hilbertian algebra, in which case one obtains many nice
properties (in particular one can find a representation via the GNS construction). The
corresponding «positive cocycles» on A have the following properties (this can be used
as a definition): let n be an even integer and w an ( n+ 1) linear form over A, then
w is a positive cocycle iff

B bw=0,

G). (1+M)Byw=0,

(iii) the following scalar product on A®™*!, p = n/2 is positive: (o ® ... ®
a?, 0’ @ ... ® bP) = w(b*a®,a',...,aP, b"*,...,b!*). When n is odd this definition
has to be generalized. Such a positive cocycle w is a Hochshild cocycle by (i) but is not
cyclic in general, however, it is possible to find a cyclic cocycle W of the same order
(but no longer positive) in the same Hochshild cohomology class. Indeed (1+)) Byw =
0 = AByw = 0 = Bw = 0 therefore w € Ker bN Ker B and we can use the
method introduced in 5.2 2b): in the present case it is enough to choose ¢ = % Byw
(then (1 — M)y = Byw as it should); in other words, if w is a positive cocycle, then
& =w — £ Byw is cyclic. Let us give two examples.

1) Let T be a Riemannian surface and f°, !, f2 three functions on X . Then the
functional w( f°, f', f2) = 5 [ f%°8,'8f? isapositive cocycle (in the case f° > 0
and f! = f2, one gets w(f2, f!, %) > 0); of course we denote 8f = dz8,f and
Of = dzd,f. Let us define df = (8 + ) f, then the functional &(f°, f!,f?) =
[z fPdf' Adf? isacyclic cocycle (but is not positive).

2) Let M be an even dimensional oriented Riemannian manifold then

(33) T(f°,f‘,---,f")=/ Trf%) fooft-0f% ... 8fMp
M

(where p is the volume element, @f = 4#0,f in the Clifford algebra and s is the
helicity operator) is a positive cocycle whereas 7 = 7 — % bB,T

(34) "r(fo,f‘,...,f")=/Mf°df‘/\df2/\.../\df"

is a cyclic cocycle.

Before ending this paragraph it is interesting and not too difficult to see how one can
get a whole ascending hierarchy of cocycles from the data of a cyclic cocycle @ of low
dimensionality (for instance @, € Zy) . We first choose o5 suchthat Byps = &, and
such that wg = bys is a positive (even) cocycle, we then build the corresponding cyclic
cocycle Wy and we iterate the construction. In this way we build a sequence of cyclic
cocycles (W, , wg,Wg, ... ) as well as a sequence ( ps, bps, g, bp,,...) comresponding
to the linear functionals

p,(a%,...,a7) = T(a%ga’ ...qa") (p being odd).

bgop(ao,...,a’”l) =T(a%a’...qa"™")
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and T being a trace on QA . In order to build positive odd cocycles, one should use
traces on the algebra ¢(A) .

7. ENTIRE CYCLIC COHOMOLOGY

We already mentioned in 4.3 that even cyclic cohomology could be reconstructed
from the study of odd traces on QA I.e., vanishing on the even part (and odd cyclic
cohomology from odd traces on €A ) but we did not really use this fact. Also, cyclic
cohomology groups are graded by intergers: a given cyclic cocycle can be considered as
an n-linear form but » is fixed and we did not construct any cocycle that would appear
sometimes as a p-form and sometimes as a g-form . However, atraccon QA (or €4)
is an object that can be considered as a form of any degree p when it is restricted to the
domain spanned by z,q(x;) ... g( zp) and q(z;)...¢g( a:p) . One would like to define a
cohomology theory in such a way that cocycles appear as sequences (@pplpeny Where o
isa (p+ 1)-linear form on the algebra A . Such a cohomology would not be Z-graded
butonly Z,-graded . All this motivates the definition of entire cyclic cohomology [25].

7.1. Functionals of arbitrary order and traceson A and €A

At the purely algebraic level one can establish a canonical one to one correspondence
between the following three notions on algebra A .

(1) cocyles with infinite support in the ( b, B ) bicomplex (discussed in Section 5.3)
which are normalized.

(ii) linear functionals ¢ on the universal differential aigebra Q A such that

1
(35) plwiw; = (=D%wpw)) = > (=D *p(dw;dwy)

(iii) Odd traces on the Cuntz algebra QA or on Zekri algebra €A .

Several comments are in order: (i) the «infinite support» requirement means that we
actually get functionals of arbitrary order. Calling C" the space of continuous = +
1-lincar forms ¢ on A, we define C* and C°* as follows C* = {(¢;,)pen -
by € C?" ¥n € N}, C°* = {(dppi1den » P2ms € C*™! ¥Yn € N}. The
boundary operator b+ B maps C® to C° and C°* to C®'. The normalization
condition is the following: a cocycle (¢,), .y is normalized iff, for any m the cochain
Byé, iscyclic, ie. iff Byg, = -:; ABy¢, . The reason for imposing this condition
is that only normalized cocycles have a natural interpretation in terms of Q A, QA or
€A . Fortunately, for every cocycle one can find a normalized cohomologous cocycle, so
this is not a restriction. (ii) Remember that cyclic cocycles are graded traces (they vanish
on elements of the form wyw, — (—1)%%w,w,) , therefore the right-hand side of (iii)
comes from the fact that ¢ is not «<homogeneous» but has a support in all dimensions.
In [20], [27], the theory is extended to Z,-graded algebras, it is therein proposed to
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call para-brackets the kind of elements of Q A on which ¢ vanishes (¢ becomes a
«paratrace»). (iii) The cohomology defined in (i) is not Z-graded but only Z,-graded
(this comes from the fact that b+ B is not homogeneous), the precise relation with QA
and €A is the following: odd cocycles ¢ are given by odd traces T on QA and even
cocycles ¢ are given by odd traces or eA. The relation between (ii) and (iii) should
not be too surprising if we remember the relation (8) of Section 2.8.

7.2. Entire cyclic cohomologyof A &

It can be proved that the cohomology defined by (i) of 7.1 is trivial! However, pro-
vided we control the growth of ||¢,.|| in a cochain (¢2p) or (¢2p+1 ) we get some-
thing non trivial in general and useful in order to analyse infinite-dimensional spaces (or
cycles) such as those that one is confronted with in Quantum Field Theory. Here we
suppose that A is a Banach algebra (to be able to define, for any m and ¢ € C™,
the nomm ||, || = sup{|¢,,(a®,...,a™)|; ||¢/|| < 1}. We are now ready for the fol-
lowing definition: a cochain of the ( b, B )-mixed complex is called entire if the radius
of convergence of the corresponding entire series is infinity. One gets a complex entire
series Z||¢,,| fl: for an even cochain (¢,,) , and a series Z||¢,,,, ||f§ in the case of
an odd cochain (¢,,,,) . Entire cohomology is defined for entire cochains in 7.1. The
corresponding cohomology groups are noted H®'® and H°* . The boundary operator
on CP isdefinedas d=(p+ )b+ -;; B . One can check that if ¢ is an even (or odd)
entire cochain, then sois d¢ which makes the notion of entire cohomology meaningful.
Notice that an entire cochain ¢ (not necessarily a cocycle) defines an entire function
on the algebra A : Fy(z) = 320 (~=D¥¢,,(z,2,...,3) /0!, € A. One canbe
tempted of interpreting the multilinear forms ¢,, as some kind of N-point functions
in a Quantum Field Theory. Entire cocycles were also introduced in [29], [30] in a quite
different context and have been particularly studied in the case of two-dimensional su-
persymmetric Wess Zumino models (one space, one time). An explicit expression for an
entire cocycle is also given there (cf. also [28]). We will return to this in section 10.6.

We already mentioned in Section 5.4 that one can consider infinite-dimensional cy-
cles A = ®,0° AP overan algebra A (with 2 homomorphism AP — A%). This is
expected when A is «big» (like in Quantum Field Theory). Then a functional z (gen-
eralizing [ ) over the differential algebra (A , d) satisfying (ii) of 7.1 ie., plAgh, —
(=D4%x, X)) = 7 (=1%pu(dd),) , with X; € A should give us entire cocycles,
via its character, as in 5.4. We will return to this problem in Section 10.6.

8. THE LODAY QUILLEN COHOMOLOGY OF THE LIE ALGEBRA OF MA-
TRICES &

There is another approach to cyclic cohomology. This approach was followed by
{30], independently from {7]. We have not followed this last point of view here but we
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will indicate what the relation between both constructions is.

Let A be an associative algebra and M, (A) = M, ® A the algebra of matrices
with coefficients in A ; it is also a Lie algebra for the commutator [ ].

One can build the universal differential algebra (M, (A)) . There is amap = :
Q(M,(A)) - Q(A) defined on monomials by

(my @ ayd(m; ®a;)6(m, ®ay)...8(m, ®a,)) =
36 m(my ® apb(m; ® a,)é(m, ®a, m, ®a,))

=Tr(mom,...m,)a6a, ...68a,.

If 7 is acyclic cochainon A, one can build a cyclic cochain Tr# 7 on M, (A) as
follows:
(Tr # 7)(my ®ag,...,m, Qa,) =
37

=Tr(my...m.)7(ag,0y,...,0,).

One can check, using the cyclicity of the trace Tr, that Tr # 7 is indeed cyclic.

The above cyclic cochain Tr # 7 is cyclicly antisymmetric (by construction) but is
not fully antisymmetric. We want to build a fully antisymmetric form ¢(7) ; we just
need to antisymmetrize Tr# 7: ¢(7) = Ant(Tr # 7) . Then ¢(7) isan antisymmetric
form on the Lie algebra (M, (A),[]D .

One knows to define in general the coboundary operator § on antisymmetric forms
on a Lie algebra: 6.

The theorem of Loday Quillen establishes a relation between cyclic cohomology
(b7 = 0) and the Lie algebra cohomology of M,(A) (8(¢(7)) = 0). One finds
in general

(38) @(b7) = 6¢(7).

It was important, in the previous construction, of choosing 7, cyclic and of antisym-
metrizing Tr # 7 rather than 7 alone since Tr(m, ...m,) is not antisymmetric. One
could try to start with a Hochshild cochain ¢, rather than with a cyclic cochain but in
this case one would not get an equality between ¢(ba) and 6¢(o) .

The previous relation involving b and & does not lead actually to an isomorphism
between cyclic cohomology and the full Lie algebra cohomology of M, (A) but only
with the «primitive» part of it. This notion is somehow easier to define at the homological
level. Let £ be a Lie algebra, then one can consider the homology of the complex
(E,(L),d) where E (L) = A™L is the n-th exterior power of £ and where d is
defined as

ATy A...Ax,) =

= > (=D™[z,zdng A AE AL AR
1<i<j<n
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Inthe case where L isthe algebra of infinite matrices which have only a finite number
of nonzero entries in the algebra A . We write this complex as (E,(M(A)),d) . We
call then E,‘:f, = E,, ® a, the matrix which has a, as the only nonzero entry on the
(u,v ) position; for a, # 0 . The subspace of ( E, (M (A),d) spanned by all elements
E: LA E:: GAA E:: %, isnoted (PE,(M(A) ). This defines actually a subcomplex
(PE,(M(A)),d) called the subcomplex of primitive elements (the fact that it is indeed
a subcomplex is the important observation). We call Prim( H,( M (4)) ) the homology
of this subcomplex and one can prove that it is isomorphic with the cyclic homology of
A.

To illustrate the above, we will consider the following example. Let 7 be the 1-
cyclic cocycle defined by 7(a,b) = % Tr(a[ F,b]) where a,b€ A= C(S') and F
is the phase of the Dirac operator on the circle acting on L2(S") as follows Dz(8) =
—ia‘% 7(8) . Actually F is properly defined as lim,_, phase (D + €, since D
has a zero mode (the constant function). Notice that F is diagonal (with eigenvalues
+1 or-1) on the base {¢"?}. For a general manifold of dimension n, one would find
[F,b] € L™, fore > 0 ,butinthe special case of the circle [35], one cantake e = 0 ,
sothat [ F,b] € L!. The above cyclic cocycle is therefore well defined and the general
theory (as well as an explicit calculation) shows that it is equal to 5:—1; f o adb. If we
replace the algebra A by the algebra M, (A) of nxn matricesover A and 7(.,.) by
w,(.,.),with [w (e ®(e;), b®(ey)) = (a.b) Trace ((e,.j)(ekl))] one can check
(using b7 = 0 ) that [w([x,y],z) —w([z,z],y) +w(ly,2],2) = O] sothat w isa
Lie algebra cocycle and defines a central extension of the Lie algebra M, (A) when we
define anew brackett [.,.]" as [u, v} = [u,v]+w(u,v)c,the new generator, ¢, being
in the center of the extension. This is, in a sense, the simplest kind of «Schwinger» term.
Elements of M,(A) can be considered as loops in M, (C) so that the above cyclic
cocycle is also responsible for the central extension of loop algebras and of loop groups
[37].

9. THE NONCOMMUTATIVE ANALOGUES OF VECTOR BUNDLES
9.1. From vector bundles to projective modules of finite type

In usual (commutative) geometry, one introduces the notion of vector bundles. This
notion is of fundamental importance in physics, namely in classical field theory since
the «classical» matter fields are almost always described as sections of vector bundles.
In the noncommutative framework, we have to generalize this notion. Actually, we have
already given the clue: the important objects are not the vector bundles themselves but
the space of their sections. From the algebraic point of vue, the space of sections of a
vector bundle is a module over the (commutative) algebra of functions on the base of
the vector bundle. By removing the adjective «commutative», we are led to the idea
of replacing the vector bundles by modules over an algebra A. Actually, the space of
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sections of a vector bundle is not an arbitrary module: it is a projective module of finite
type (these properties will be recalled below) and this will indeed be the right notion to
generalize.

9.2. Modules over an algebra A (We assume that 4 is unital)

As itis well-known, amodule over A islike a vector space with the difference that A
is an algebra (actually a ring) and not a field. One can think of a complex module E asa
complex vector space endowed with a representation of the algebra A . Actually, when
A isnotabelian, one has to distinguish between left and right A modules. Fornotational
reasons, it is convenient to use right modules. As for vector spaces, one introduces the
dual E* of E as E* = Hom 4(E, A) ; notice we can identify E with Hom 4(A, E)
and A with End ,(4) . This justifies the use of dyadic formalism (bra-ket notation)
in this case: if |{) € F and (p| € E* then [€) (p| € End ,(E) and (plf) €
End 4,(A) = A. The right actionof A on E canbe written [£)a = |€a) .

Notice that A™ = @, A is a unital A-bimodule. Indeed z{a',...,a"}y =
{zaly,..., za"y}

E is called a free module if it is isomorphic to A" . In this case, one can find a basis
le;), 1.e., a minimal generating family as well as a dual basis {e'| with the propertics
(¢! | ;) = 8 and |¢') (¢;] = 1 (using Einstein’s convention). A free module behaves
as a vector space, n is called the dimension of E . Notice that the space of sections of
a trivial vector bundle over M is a free module over C(M) .

E is a module of finite type whenever there exists a morphism (projection) 7 :
A" — E . In this case, one can again find a basc {|v;)} . This basc is the image of the
base le,) = {0,0,...,1,...,0} in A" under the morphism (projection) 7. In other
words, F is of finite type if it can be finitely generated (this, of course, does not imply
that it is free!).

E is a projective module of finite type if 1) it is of finite type (hence we have a basis
|v;} = 7le;) ) and 2) it is projective, in the sense that therc exists a lift A : E — A"
such that 7A = 15 . This last property allows us to build a dual basis (v*]; we will
have |v*) (v;| = 1, as in the free case, but (v* | v;) # &; . Indced, we build the dual
basis (v'| = A(e'| where A : (A™)* — E~ isthe transpose of . The closurc relation
|v*) (v;] = 1 is another way of writing 7 = 1 and the pseudo-orthogonality relation
reads (v' | v,) = p} € A (p} # 6} in general), where p} are the components of the
projector p = hw of the free module A™ (p is indeed a projector since pp = Awiw =
Mo = p). Notice that p= Aw € End 4 A" allows us to decompose A" as follows

A"=pA"+ (1 —p A"
ATl
E
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o (and ) ) are isomorphisms between E and pA™ (itisclearthat E isindeed aright
module). Since End 4(A") = M,(A) = M, ® A, wecanrepresent p asa nx n
matrix with elements in A. We could also caracterise such a finite projective module
E by writing that it has to be a direct summand of a free module; this means that (up to
isomorphism) we can write A" as A" = E @ F . It can be shown that, in this case F
is also of finite type (but not necessarily free).

It can be shown that the space of sections of a vector bundle above a manifold M is
always a projective module of finite type over the commutative algebra A = C(M) of
functionson M .

In the noncommutative framework, the notion of vector bundles (or better the notion
of space of sections of a vector bundle) is replaced by the notion of projective modules
of finite type over an algebra A, or equivalently, by projectors in the algebra M, (A4) .

9.3. K-theory of algebras A &

In differential geometry, one first defines the notion of vector bundles over a manifold
X , and notices that the space of equivalence classes of vector bundles (under isomor-
phism) is an abelian monoid, one can define the sum of two vector bundles and this
operation is associative. One is therefore tempted to construct a group by considering
«negative» elements (exactly as when we construct the integers out of the positive inte-
gers). A technical complication is that, in the present case, the monoid is not simplifiable
(a+ c= b+ c doesnotimply a = b). There is nevertheless a simple way to get around
this problem; following Grothendieck, one defines the abelian group K°(X) as the
space of equivalence classes ( a,b ), where (a,b) ~ (a',b") if and only if there exist ¢
suchthat a + b+ c=a'+ b+ ¢, (morally a —b=a’ — V'), a,b,a’, ¥, c being them-
selves classes of isomorphism of vector bundles. Usual vector bundles can be written as
(a,0) = +a and «virtual» vector bundles as (0, a) = —a . The shortest way of defining
the group K'(X) isto define itasthe KO group of its suspension SX . The suspen-
sion of a space X is exactly what our intuition suggests (for instance the suspension of
a circle is a two-sphere and more generally §S? = SSP*!). One could be tempted of
continuing this way and defining K?(X) = K1(SX) = K°(SSX) but it tums out
that K°(X) = K°(S%2X) - Bott periodicity —: a space has the same K -theory as its
double suspension [31] [32]. So, topological K-theory stops there and we have only
to consider K°(X) and K'(X). Actually, we consider here only complex vector
bundles, indeed the periodicity is not two but eight in the real case. The reader certainly
knows that, even in the realm of «commutative» geometry, one can define higher «alge-
braic K-theory groups» or «Quillen groups»: their noncommutative counterpart also
exists but we will not discuss them here.

In noncommutative geometry one follows the same construction and, because of the
results of sect. 9.2, defines the K -theory groups K,;( A) , foraunital algebra A, as the
abelian group associated to the isomorphism classes of finite projective modules over
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A . Equivalently, it is also the abelian group associated to equivalence classes of idem-
potents e (projectors in M (A) ). Again, the group K,(A) is defined as Ky(SA)
where the suspension of an algebra A is defined as follows (by «dualizing» the cor-
responding definitions for spaces): SA is the subalgebra of the algebra of continuous
functions on [0,1], value of in A suchthat f(0) = f(1) = 0. There is actually a direct
algebraic definition of K;(A) which is less intuitive: it is the quotent of GL_(A)
by its commutator subgroup. The important observation making link with commutative
geometry is that, in the case where A = C(X), one gets K;(A) = K'(X),i=0,1
(Serre-Swann’s theorem).

9.4. Connections on finite projective modules

As in (commutative) differential geometry, it is useful to introduce connections (and
their curvatures). The basic ingredients are the following: A an associative algebra,
E, a right finite projective module over A and A = @®,-0AP a graded differential
algebra, with A% = A - or at least a homomorphism A —? A® asin 5.4, then A
is a A-bimodule —. In the commutative case, A would be C(X), E would be the
space of sections of a vector bundle over X and A the algebra of differential forms.
We will now define a notion generalizing the notion of «exterior differential acting on
p-forms valued in a vector bundle» — Actually, in most cases, it is even more convenient
to assume that A is acycle over A, as defined in Sect. 5.4, which means that we have
alsoatrace { : A" — C suchthat [ dw=0 forw € AP~! . One first considers the
space E, = @)_oE} with Ef = E®,4 A, . Notice that elements of E} should be
considered as « p-forms valued in E »; notice also that E} is still a right A-module .
A A-connection V on E —one may call it a covariant differential —, is a map from
E; = E into E) suchthat

(40) V(X)) =(VX)f+X®df where Xe€FE and fegA.

Notice that V is C-linear but not A-linear. The covariant exterior differential on
E is the graded derivation of E, which extends V, i.e., onc imposes the (graded)
Leibnitz rule

41 V(X @M =(VX)h+ (-DPX ®d\ with X eE{ AeA.

In order to introduce covariant derivatives «in a given direction,» one needs a kind of
dual L of A! (overthealgebra A),indced,if 2 € E and € € L then VX € EQ A
and we define

42) VeX = (VX,£) € E.

A particularly important case occurs when one starts with E, A and a Lie algebra
L acting by derivations on A, so that L C DerA . In the case where A has enough
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derivations, it can be usefull to consider the space C(DerA, A) of cochains of DerA
valued in A . This space has naturally a structure of graded differential algebra and one
can define connections by chosing A equal to C(DerA, A) . This space is however
rather big (even in the classical case where A is C(M) , it contains highly non local
objects) and it can be interesting to consider the smallest subalgebra of it that contains
Ajletuscallit Qp(A) . This new algebra is another possible generalization of usual
differential forms; one can define connections by chosing A equal to Q,(A) . This
method is described in [47]. Notice that in this last case, one can introduce covariant
derivatives in the direction of a derivation of A . One can also distinguish the following
cases:

(i) A= C(X) and L is the Lie algebra of vector fields on X . This is the case
of differential geometry (and «linear connections» deal with the case where E itself is
some tensorial power of the tangent bundle T'X or of the cotangent bundle T X .

(i) (A,G,«) is adynamical system, i.e. G is a Lie group acting in the algebra
A by endomorphisms (k € G, f € A, o, (f) € A). Then LieG acts also on A by
derivations: to each { € Lie G, one associates a derivation of A noted d; . One then
choose again L = Lie G and build A as the exterior algebra over L* . One obtains in
particular V (zf) = (V) f+ Xd,f. The study of connections on dynamical systems
canbe found in [34]. The case where A is a graded commutative algebraand L agraded
Lie algebra of graded derivation is investigated in [17]. Let us return to the general case
and define the curvature operator of the connection V as V2 . V is not linear, but we
can easily check that, exactly as in the case of vector bundles, V? is a endomorphism
of E, ;ie, V? isalinearoperator: V2(XX) = V2(X)\,z € E\, €A .

Since (Q(A),8) is a universal object, it is enough to consider generalized differen-
tial forms (elements of Q(A) ) valued in a right A-module E. E is, in the present
cases, isomorphic to pA™, this suggests that we should study the case £ = A and
A = Q(A) . Here we suppose that A is unital, call 1 its unit and assume that §1 = 0
in Q(A) . This means that A should be denoted Ato agree with the notations of §2.
Let V bea Q-connection on A. Take 1 € A, thenwecall w= V1 € Q1(A4), the
connection one form. Take f € A, then, writing Vf = V(f1) = (V) 1+ f@61=Vf
does not bring anything new. However, we canwrite Vf = V(1f) = (V1)§+1Q6f,
which shows that

“3) Vf=éf+wfeQ’
The curvature © is defined as
(44) @ = Vw = V1
Therefore © = V(1w) = (VD)w + 16w so that

45) O = bw+ w?
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In the case of the commutative algebra A = C*°(X) , an Q-connection is defined
by an ¢lement

w= " a;b,
i
of Q1 sothatitcanbe represented as a function of two variables

w(z,y) = Y a2 (b(y) — b(x)).
Let us call « Cl », the «classical» universal map from Q(A) to A(X) . Then
Cl{w) = ) a;db;

Cl{w)(z) = Y a;(2)8,b,(z)dz".

In the case where X is a Riemannian manifold, let us call # the universal map
factorizing the derivation £ from A to the Clifford algebra of the tangent bundle.
Then

m(w) = E adb;.

Notice that there are many more Q -connections than «classical» connections. For
instance the element

1
o= 167 = 3507 = 2520 aor

is not zero in Q(A) but Cl{w) and w(w) are both zero. Morcover dw = 6f6f €
Q2 (A) is not zero cither, but although Cl(dw) = 0 in A (X) , we sec that 7(w) =
df df=|df |}#0 inClff (TX).

Let us compute ©,7(©) and CI(®) in this case. In order to use standard nota-
tions, we call A= Cl(w) and A= y*A, = n(w) . Notice first that m(w?)= AA=
A A# = A®  Then

m(w) = E 8,007 8,b; = > v*1°{8,(0;0,b; — 0,8,0,b)}
i i
It is convenient to introduce the symmetric tensor

B,, =) a:,3,b
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Then
n(dw) = Y¥4"0,(4,) —1*7"B,,
On the other hand, calling

F=Cl®)=Cl(bw)=dA, and F =0A,—-0,A

by pfte T Y

the classical curvature of A, we may write

" (8,4,) = 2 F "+ 0¥A,
so that
1
n8) = 2 W'Y+ A, - B, + A4,
But B, is symmetric so that we may call b the scalar
b=~*4"B,,=¢"B,,
The final result is
1 v
(46) mO) = 7 WY+ (0FA, + APA, D).

This shows clearly that there is «more» in the connection a than in its classical
counterpart A. At this point, the reader could be tempted to consider the expression
Tr m(©2) in the Clifford algebra. Notice that ©2 itself is an element of Q*(A4) . A
straightforward calculation leads to

@n %Tr m(©2?) = -1— L+ —(aA+ A? — b2,

The physicist recognises the Maxwell Lagrangian for electrodynamic (the field b
does not propogate: it can be climinated by using its equation of motion % = 0 so that
b=9-A—A%).

From the conceptual point of vew, what we just did was to use the universal map
Q(A) — Cliff (TX) factorizing the derivation d: A — Cliff (T X) and touse
the trace in the Clifford algebra. Notice that we used the trace and not the «supertrace»
Str (z) = tr (ysz) ; this would have lead to the topological invariant FWF"“' rather
than to the Maxwell lagrangian.
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We will indicate in Sect. 12 how to couple this «electromagnetic» connection to
«spinors» in the framework of noncommutative geometry.

We will not continuc further the study of these A -connections ; the interested recader
is referred to [7]. A relation between these non classical connections and the geomet-
ric structure of canonical commutation relations has been studied in [45],[46]. Beforc
ending this paragraph, we should mention that if A = ®p-o is a cycle over A, with
n=2m,even,then [ O™ isindependent of the choice of the connection V ; therefore,
as in the case of differential geometry, one is tempted to consider

m! /(2m

as a characteristic number of the algebra A, obtained from the pairing of a finite pro-
jective module E and a cycle A . This will be done in the following. We will retumn to
some aspects of connections in Sect. 12.

9.5. The pairing between even cyclic cohomology and K,( A)

We know, from sect. 9.3 that a given finite projective module E dctermines a well
defined element { e Jin Kj(A) ; we also know that [ e ] can be represented as a projector
e inthe space M (A) of k x k matrices with elements in A . Besides, we know that
if [p] € H?™(A) is represented by a cyclic cocyle v of order 2m on A, we may
replace both A and ¢ by M (A) and ¢# Tr (Morita invariance). The last remark
of 9.4 suggests that we should consider the pairing

(48) (el [e]) = (e Tr)(ee,... €)

(2 17r) m
One can prove [7] that this indeed defines a pairing between K,(A) and H*°(A) ie.,

the number on the left hand side does not depend on the choice of e in[e ] and of ¢ in
[ ¢ 1. Moreover, one proves that

49) (Lel, [el) = (Lel, [Sel)

where S is the periodicity operator (cf. scct. 5), and that, if ¢ is a cyclic cocycle defined
as the character of acycle A over A (sect. 5.4) then, one obtains

(50) (Tel,lel) = — /(2m

Where © is the curvature of any A -connection on the module associated with e,
as described in sect. 9.4. Notice that (eq. 49) shows that K,(A) actually pairs with
periodic cyclic cohomology as defined in sect. 5.3. The reader should not be surprised
that only the even part of H}(A) pairs with K,(.A) — this can be seen in the previous
formula since @ is an even dimensional object — The odd part plays an important role:
it pairs with K;(A) .
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9.6. The pairing between odd cyclic cohomology and K,(A) &

We mentioned in 9.3 that K, (A) could be defined as the quotientof GL__ (A) byits
commutator subgroup. We will give the formula establishing the above mentioned pair-
ing [7]. Let u € GL,(A) be arepresentative of [u] € K,(A) and p € Zf'""l (A)
a representative of [ ] . Then one defines

. 1 1 1
1) ([U],[‘P])‘ (2im)m 22n+1 (m_%)%

(T (w ' =1 u—1,u =1, u—1).

One can prove that this is indeed independent of the choice of the representatives
within their equivalence class and that

(52) ([ul,lel) = ([u],[Sel).

Notice that u can be considered as a finite projective module for the suspension of
the algebra A (this amounts to add another «dimension» to the problem — that physicists
could be tempted of calling «time» —).

9.7. The pairing between K,(A) and entire even cyclic cohomology &

In the same way, one expects a pairing between K,(A) and H{ . Indeed, if ¢ is
an entire cocycle, we can associate with it an entire function Fp on A (cf. sect. 7.2).
If e is a projectorin A characterising a finite projective module, we may consider the
pairing

(53) (lel,[p]) = Fyle)

between K,(A) and HZ(A) ; as expected, one can indeed prove that the result is in-
dependent of the choice of e and ¢ within their respective equivalence classes. More-
over, we know (from sect. 7.1) that there is an equivalence between entire cocycles ¢
and odd traces T on the Zekri algebra €A ; it can be shown [25] that, it terms of 7, the
previous result reads

54) ([e],[<p])=7<——F—e——2->
Vv1-(ge)

where F now denotes the odd generator of €A over QA (F? = 1, of sect. 2.8) and
g is the pseudo differential introduced in sect. 2.8, eq. 8.
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10. FREDHOLM MODULES

10.1. Motivations

From the physical point of view, Classical Ficld Theory usually involves the data
of a differential (or pseudo differential) operator P, for instance the Dirac operator,
mapping the sections of a first vector bundle E, above X (the classical spinor fields,
for example) into the sections of another bundle E; above X . Of coursc E, may
coincide with E; . Actually, physicists usually assume that the vector bundles E, and
E, are equipped with some chosen metric (in order to write an action principle and
expressions like [y, (¢, Pp)) . The first thing to do is then to complete the space of
sections of Ej, E; for some Sobolev norm, thus building two Hilbert spaces H,, and
H, with P : H, — H, . One then wants to use a propagator, therefore an inverse (J
to P ; there may be problems at this level.

It is convenient to write H = Hy, & H, and

0dQ
= 15s)
and to think of ( /, F') as a whole. The geometrical (or algebraical) structure given by
apair ( H, F') is called a Fredholm modulc; we will give below (in Sect. 10.2) a precise
definition. In the above case A = C(X) and this commutative algebra is represented
by multiplication operator in H .

Finally, when a physicist quantizes a classical theory and builds a quantum field the-
ory, he follows well defined algorithmic procedures (that we will not recall here) that
have certainly a purcly geometrical interpretation since they depend only on geometri-
cal data but these procedures have usually been developed in a perturbative context and
their global geometrical meaning is often unclear. The notion of Fredholm module ex-
ists also when A is not commutative. The hope is that some of the material presented
here may help to clarify these quantum aspects. It is believed — at least some people
including the author believe - that such structures (or more probably generalizations of
them) will give us one day a tool to analyse (and define) Quantum Field Theories in a
nonperturbative way.

From the mathamatical point of view, and as we shall see below, Fredholm modules
are also of fundamental importance. We already met, in the previous chapters, the non-
commutative analogue of differential forms and of de Rham cohomology but not the
analogue of elliptic operators. Elliptic operators are in a sense, dual to vector bundles:
out of an elliptic operator and a vector bundle, one gets an integer, namely the index
of this operator. In this sense, one can say that elliptic operators on a space X should
allow us to build the «dual» of the theory of vector bundles above X . The latter being
called K-theory (cf. Sect. 9.3), the former is then called K -homology. In order to
define this notion properly in the noncommutative case, onc defines Fredholm modules
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as in 10.2. (they are the proper generalization of the notion of elliptic operator). In the
case where the algebra A under study is C(X) , the K-homology of X is roughly
speaking defined as the space of homotopy classes of Fredholm modules over C(X) —.
As we shall see later (sect. 10.3), a Fredholm module called ( H, F') allows us to build
infinitely many cycles on A (in the sense of sect. 5.9); all have the same underlying
differential algebra A but they are of dimension n > p where p is a real number (not
necessarily an integer) depending upon ( H, F'). The characters of those cycles give us,
as in 5.4, a whole hierarchy of cyclic cocyles on the algebra A.

Fredholm modules being the generalization of elliptic operators, we will define their
index insect. (10.4). Since Fredholm modules yield cyclic cocyles and since cyclic cocy-
cles pair with K -theory (cf. sect. 9.5), then Fredholm modules also pair with K -theory
but, this time the value of the pairing will be an integer (since it will be equal to the index
of an operator); this will be discussed in sect. 10.5. Till now, we did not mention the fact
that, as it occurs most of the time in physics, the operator that we want to study is not
necessarily bounded and docs not have always an inverse; we will indicate in 10.6 how to
handle this situation (as physicists know, one just has to introduce an extra-dimension).
A last problem that appears in physical situations is that very often the Fredholm mod-
ules of interest are not finitely summable (the number p mentioned above is infinite); to
tackle this situation, one introduces the notion of ® -summable Fredholm modules and
replace cyclic cohomology by entire cyclic cohomology; this will be discussed in 10.6.

10.2. p-summable Fredholm modules

We first recall a few basic definitions.

Polar decomposition. Let H a separate Hilbert space and £L(H) the space of
bounded operators on H . The first thing to rememberis thatif 7' € £L( H) thenone can
define the adjoint 7™ of T and T isa positive operator (Vz € H,(T*Tz,z) > 0).
One then defines |T'| = v/T*T — one can take the square root of a positive operator —
indeed there is only one operator |T'| such that |T|> = T*T. One can then write
T = |T'|¢y where ¢, is by definition the phase of T .

Schatten classes LP. Let p be a real number p > 1, then, the Schatten class LP
is defined as the space of all bounded operators on H such that Trace |T'|P is finite.
Calling 4,(T) the ntheigenvalue of |T|, one can replace the above by the condition
that

Do (ua (TP

n=0

is finite. Intuitively, the eigenvalues of T should decrease fast enough at infinity and,
using the quantum field theoretical jargon, one could say that p measures the way T
behaves by power counting. One can prove that £P is a two-sided ideal in L(H),
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that £P C L9 if p < ¢ and that LP is complete for the Schatien nomm || T' |}, =
(Trace |T'|P)!/P . We should remember that

L'cr?c...cLfc...cL™

where L£! are trace-class operators, £2 are Hilbert-Schmidt operators, and £ are
compact operators; we refer to any treaty of functional analysis for a more detailed study
of these spaces. Let us formally remember the definition of a Fredholm operator: P €
L(H) is Fredholm iff it is invertible modulo compact operators, ie., if one can find
Q € L(H) suchthat PQ— 1 and QP — 1 are compact operators.

Pre-Fredholm modules ( H, F' ) over an algebra A (a possibly Z,-graded-algebra ).
Thisisa Z,-graded Hilbert space H = H, @ H_ endowed, from the one hand, with a
representation p of A into H,(so H isaleft A-module) and, from the other hand,
with a bounded operator F' € L(H) whichis odd for the Z, grading and such that for
any f € A, the operators p( f)(F? — 1) and [ F, p(f)] are compact. The grading
operator can be written as

10
(o)
Any operator G of L(H) canbe writtenas G = G, + G_, where
1 r
G, = E(GiG )

with GT = T'GT . The requirement for F to be odd means that FT' = —F, thus F
can be written as
04Q
F= [ > ] |

As an example at the classical level, one could think of P as an elliptic operator of
order 0 from a vector bundle E, toavector bundle E above the same space X ; H,
and H_ are then the Hilbert spaces of square integrable sections of these bundles and
f€A=C(X) actson H, and H_, by multiplication . A similar kind of structure
naturally emerges in Quantum Field Theory as well (the case of supersymmetric Wess-
Zumino models, where F' is a Dirac operator on a loop space — a supersymmetry charge
—and F? isthe Hamiltonian investigated in [29]).

Fredholm modules ( H, F') over an algebra A . The definition is the same as for a
pre-Fredholm module but we replace the condition « p( f) (F? — 1) is compact» by
the condition « F2> = 1 ». In order to usc the formalism of sections 110 9, it is indeed
important to have F2 = 1 (and notonly F? — 1 compact!), this is linked, as we shall
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see later, with the fact that we want to define an operator d with d> = 0 . Actually there
is a way to associate canonically to each pre-Fredholm module a Fredholm module, this
is explained in [7], p. 305, let us just indicate that one has just to double the number of
components, Le., to add an extra-dimension (time?) i.e., toreplace H = H, @ H_ by

H=H&CeoC)=(H*'@H )®(H o H").

The first notion of Fredholm module is due to Atiyah [36], in the case of manifolds
of even dimensions, his definition has been generalized by several authors and finally
brought to the arena of noncommutative geometry in [7].

p-summable pre-Fredholm modules ( H, F') over an algebra A. In the case of a
pre-Fredholm module one imposes both [ F, p( f)] € L£LP and p( [ FZ_11ecr.
In the case of a Fredholm module one imposes only the first condition since the second
one is already replaced by the condition F? = 1. Example: The Fredholm module
coming from a given elliptic operator acting on sections of a vector bundle over X is
p-summable for p > dim X .

We will see later that it may be necessary to remove the condition that F' is abounded
operator and replace it by the weaker hypothesis that F' is a possibly unbounded, self-
adjoint operator such that [ F, p( f)] is bounded forany f € A (morally F isof degree
1) and such that F~! is p-summable (morally, the eigenvalues of F increase rapidly
enough at infinity). Suchadata ( H, F') can be called an «unbounded Fredholm module»
or a «Connes module» (as in [8]). Actually one can even get rid of the hypothesis that F
is invertible. The typical example is given by the Dirac operator acting on L? sections
of the bundle of spinors over a Riemannian spin manifold.

10.3. From p-summable Fredholm modules to cyclic cohomology

The fundamental observation allowing us to link Fredholm modules with the rest of
the theory developed in sections 1 to 9 is the following: let ( H, F) aFredholm module
with grading T ,let £ € L( H) , then define

(55) dz =3[ F,z],
where the graded commutation is defined as follows
(56) [F,z],=T[TF,z]=(Fz -Tzl'F) = (Fz -1 F).
Then d is a derivation and
d*=0
Actually, one obtains more generally the obvious equivalence

57 d=0eF=1
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Notice that one can always write, for £ € L(H)
T=2Z,+1T_
with
1 r
T, = E( Ttz )

and z' = I'zT" . Then dx defined as above can also be written

dz=[iF,z, 1+ {iF,z_}.
d d

When F? 5 1 we can check that d°z = [z, F?].

One can therefore apply the universal properties (cf. sect. 2) of the differential enve-
lope €(A) and associate the «abstract» monomials ay6a,8a, ...8a, of Q(A) with
the «concrete» operators

agda;da, ...da, = i"p(ao)[F,p(al)]g[F,p(az)]g...[F,p(a")]g.

All the constructions carried out in sections 1 to 9 could be «explicitly» done by
representing £ (A) is such a way.
At a formal level, the idea is the following. One first builds the direct sum

N
¢=0

where A% = p(A) and A9 isthe linear spanin L(H) of monomials p(a,)dp(a;) ...
dp( aq) and where dp(a,) = [ F, p( ai)]g . Then A is a differential algebra with dif-
ferential d . Moreover, one can define the following «supertrace»

(58) Str(z) =Tr 'z

This definition makes sense if x € L' (a trace-class operator). Notice that
Str(zy) = (—=1)P9 Str (yz) where p=degz, ¢ = degy and that

Str(de) =TrT'de =i Tr(T Fr —T'al' F) =
=iTr(I'Fz — 2l F) = 0.

So that Stris a closed graded trace. Actually, one proves that if (H, F) is p-sum-
mable, then A* C LP/*¥ . We are therefore in the situation described in sect. 5.4. We
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obtain a cycle w € A™ — Str(w) when n is big enough such that the supertrace con-
verges, and the character of this cycle yields a cyclic cocycle. Notice however that the
supertrace vanishes if z is homogeneous with odd degrees, therefore we will only get
even cyclic cocycles in this way (this could be called the Furry’s theorem of noncom-
mutative geometry!). Since F is odd (remember the definition of Fredholm modules),
we find that, formally, we can write

(59) | Str(z) = %Tr(FF[F,z])

but this makes sense for any bounded opeartor z assoonas [ F,z] is trace class. Using
the fact that the Fredholm module ( H, F') is p-summable, one finds that

Str(p(ag)dp(ay) ...dp(ea,))

exists whenever n > p — 1. In other words, to each p-summable Fredholm module
( H, F), one can associate a hierarchy of even cyclic cocycles 7,,n= 2m , obtained as
the characters of the cycles

(60) /w = (2im)™m! Str(w),
for w € A", (cf. sect. 5.4), and explicitly given by any of the following formulae:
7(ag,0q,-..,8,) = (29m)™m! Str(p(ay)dp(a,) ... dp(a,))

= (2im)"m! Tr (Fp(ao)dp(a,) ...dp(an))
(62) = (2im)™m! i Tr (rp(ao) [F, o], - [F,p(a,,)]g)

,"n—l
= (2in)™m!
(2im)™m >

T (TF [F,p(a0)), - [FopCa,)], ) -

The last formula results from the formal trick (58,59) and this actually shows that
one can indeed take n > p — 1 (the fact that the trace converges for n > p resulting
obviously from the definition of p-summability ). These cyclic cocycles 7, are called
the «characters of Fredholm module (H, F) and their cohomology classes [ 7, ] are
denoted Ch™(H,F). Notice that if A is trivially Z,-graded, then p(a),a € A
is even (p( o)l = p(a)) and the graded commutator becomes a usual commutator:
dp(a) = i[ F, p(a)].

The example where A = C*(X), X atwo-torus (considered as a quotient of the
complex plane by a lattice) and

[ 0 (8+07!
F= [3+e 0 ]
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is carried out in [7). Here € is chosen to make (§ + ¢) invertible. Since the space
is two-dimensional, the module is p-summable as soon as p > 2 ; it is in particular
3-summable and one gets a two-cocycle

7(f°, f1, %) = (2im) Su (i [F, f' Yl F, 7)) .

The explicit calculation shows that
o fi ) = [ 14t e,

where f' € C*(X) . The resultis not too surprising in view of the correspondence be-
tween cyclic cohomology and the De Rham homology for currents mentioned in
sect. 4.6.2.

Since F? = 1, notice that
[F,a®1F = Fo°F — o° = Fa"F — F%a, = F[a°, F}

(Here our notation does not distinguish between a and p(e) ). Since F = F~! we
could write (for example)

FTF ' Fa®1F ' [Fo"1FI[F,d®) =
=T F[F,a°)F1[F,a'|F[F,a?) =

=T F[F,o®)F*[F,a'1[F,a%] =

=T F[F,a®)[F,a'][F, a?].

In the case where A istrivially Z,-graded , one can therefore also write the previous
cyclic cocyles as follows:

7(a®,al,... 0" =
(63) 1
= (2m)mm!5 Tr (CF'[F,e®1F7}[F,a']...F7'[F,a"]).

This may appear as an artificial and rather formal manipulation but it is useful for the
following reason: one can prove that for an invertible operator F' of square not equal to
1, this formula still gives a cyclic cocycle. One does not even have to suppose that F' is
a bounded operator on the Z,-graded Hilbert space H butonly that F~! is bounded,
that F~!1[F,p(a)] belongs to LP forany a € A and, of coursc that FT' = —T F.
Such a data is called a «Connes module» in [8]. The proof of this result [7] is obtained
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by building, out of this Connes module, two Fredholm modules ( H,, F, ), (H,,F,) ,
with corresponding characters 7,7, and getting 7 has

E‘( - TZ) .
One can even replace the condition « F-invertible » by the weaker condition
(1+ F))~'ecr

In the last case, the previous formula is still valid, provided we regularise F~! ; this
is obtained by replacing F by F, = eF®1+ 188 . where

01
2= [1o]
and ¢ is a small real parameter. Indeed F2 = (1+ €2F?)®1 sothat F, is invertible.
One can think of e as the inverse of a Pauli-Villars mass regulator, indeed, we could
also replace F by F,, = F®1 + M1&p then Fy = (F* + M?) ® 1 and this is -
in a particular case - the well-known construction associating to the Dirac operator, the
Dirac Hamiltonian with mass M . In any case, formula (63) still gives us a cyclic cocyle

7, when we replace F and F~! by F, and F'. The important fact [7] is that the
cohomology class of 7, is independent of ¢ and that the limit

'r(ao,a1

vooa™ =lim7(a%, et ... 0™
e—0

exists. The limit ¢ — 0 (or M — oo) can be thought of as a case where everything
is localized. The reader familiar with one loop calculations in Quantum Field Theory
can recognise the previous cocycle as a one loop Feynman diagram of a special type.
In the case where F is the Dirac operator on an even dimensional manifold, 7 ap-
pears as a fermionic loop (a (n+ 1 )-gone) with one insertion of the helicity operator
(T = ~5 here). Formally, if A is the algebra of smooth functions on RP, we can in-
terpret p(a;) as test functions obtained by superposition of exponentials exp(ip;z) ;
by going to Fourier space, one recognises [ D, p(a;)] as an insertion of p{j = qﬂpj‘
at the vertex j (since [7*8,,exp(ip;z)] = ip ;) and D! as the Dirac propagator.
Tr denotes both a trace in the Clifford algebra and an integral over dzP . Moreover, the
usual conservation of impulsion at each vertex comes from the fact that products become
convolution products in Fourier space and from the properties of the exponential. One
gets moreover an overall conservation of momentum

6 (Po + ZP;)
=1
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which shows that the result is a function of #n independent variables. This type of dia-
gram, with one insertion of an axial current, is quite standard in Quantum Field Theory.
The p-summability of the Fredholm module is a translation of the fact that this type of
diagram is convergent whenever the number of external legs is > (p+ 1) . Going back
to z-space , we will give the 4-cocycle 7,(f°, f!, £, f3, f*) when A is the algebra
of smooth functions over an 4-dimensional spin manifold ( F' being the Dirac operator):

TO(fO:fllfzyf3yf4)=
64 =/f° dft Adf? AdfP A dft+
uyb

1
+ E/f"f‘fzﬁf“R‘;a,, v 5 4z Adaf A dzT A dz?

where R is the Riemann curvature tensor. The general formula ([7]) for a manifold X
of dimension = is:

B0 f = [ £ U A NG () S 1

(65) +(S* W) (0 f™
+ (8w (%, ™
where the w; are the differential forms w; = Aj(pl,...,pj) expressing the A genus

of X ,and S is the suspension operator of cyclic cohomology (sect. 5.1). Here, the w;

are of degree 4 j and should be viewed as a current @; of dimension n — 45

(66) D010, fmY) = /f" df' A AT Aw,
A given Fredholm module ( H, ') defines cyclic cocycles 7,,7,,.9,7,.4 -.. and
therefore cyclic cohomology classes [ 7,1,[7,,,1,(7,,4]1.... One can prove [7], that

S{7,] = [7,,.,] where S is the operator introduced in §5.1. The number obtained
from the pairing of e with 7, € H} was given in sect. 9.5. From this last property, it
is clear that any of the characters [7,], for = large enough, defines an element of the
even periodic cyclic group Hp.o (cf. sect. 5.3). This element is denoted Ch*(H,F)
and called the character of the Fredholm module (H, F) .

We do not explain how to construct odd-dimensional cyclic cocycles for an algebra
A [7]. Roughly spcaking, one has to build a Fredholm module for the algebra A Q) C,,
where C; = C+ C is the Clifford algebra generated by 1 and o with a? =

10.4. Noncommutative index theory &

We already know (scct. 9.5) that even cyclic cocycles pair with elements of K, (A) ,
a gencralization of the fact that one can obtain a number by intcgrating a characteristic
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class over the base of a vector bundle. Since a Fredholm module ( H,F ) over A (a
generalization of an elliptic operator) provides us with a whole hierarchy of cyclic co-
cycles T, , it is clear that we can pair those cyclic cocycles against an arbitrary element
[e] € Ky(A) ([e] describing an equivalence class of finite projective modules over
A and e being explicitly given as an idempotent in M, ( A) ). The last result of section
10.3 shows actually that the interesting pairing is obtained between [e] € K;,(A) and
[7] = Ch*(H,F) in H ™ . The important result is that this number ([el,[7]) tums
out to be the index of a Fredholm operator and, therefore, an integer. Writing

7 [5s)
and
~[52]
0el]’
one considers
wee[39]

P, = (eFe)* is a Fredholm operator and its index turns out to be equal to ([e],[7]}.
The fact that this expression depends only and additively upon the class [ e ] is a remark-
able property [7].

10.5. Noncommutative connections using Fredholm modules

Let V be a noncommutative connection acting on a (right) finite projective mod-
ule E over a unital x= algebra A, with values in the universal differential algebra
(Q(A),6) -cf.§9.4. Let also (H, F) be a (left) Fredholm module (with F2 = 1).
Then, as in §10.3, one builds the differential algebra

A= e)qA"

where A9 is the linear span of monomials agda, ...da, and where da, = i[F,a,], 0,
€ A. Here we no longer write explicitly the morphism p such that A% = p(A) . The
universal map (2(A),8) — (A,d) allows us to replace «abstracts € -connections
by «concrete» A -connection . In the particular case E = A, such a connection will be
described by an element

w=y adb =iy alFb]

1 I
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of Al andits curvature ® as

O =dw+w? = i(Fu+wF) +w?,
indeed

dw =i Fwl, =i(Fw+wF),

since it is a graded commutator. To make things even more concrete, we can take the
example of a compact Riemannian manifold M of dimension n, with H the Hilbert
space of L? spinorson M and where the operator F' is the phase of the Dirac operator
(F = D|D|™!) ; i.., from the physical point of view, is the operator that distinguishes
between positive and negative frequencies. For a four-dimensional manifold M , the
above Fredholm module is p-summable for p =4+ €, € > 0 . On the other hand we
mentioned in §10.3 the fact that A¢ C L£P/? when the Fredholm module is p-summable .
The curvature ® € A2 C £P/2 | sothat @ is a Hilbert Schmidt operator (© € £?)
whenever p < 4 . This shows that the noncommutative Yang-Mills action (or, for that
matter, the Maxwell action). Trace(@*@) is finite in dimension 4- ¢. This is a nice
reformulation of the corresponding fact in perturbative Quantum Field Theory (which
have been known by more than forty years by physicists). One can prove (exactly as
in Quantum Electrodynamics for example) that in dimension 4 the divergence of trace
(©*0 ) is only logarithmic ([41],[any book on QED]) and that its principal term (the
coefficient of log(L) if L is acutoff) can be identified with the classical action. Tech-
nically, the calculation of the principal term of such an operator P is given by Wodzicki
residue or equivalently by the so-called Dixmicr trace [41].

10.6. ©-summable Fredholm modules &

In some circumstances, the algebra A in which we are interested is «so big» that one
cannot find p-summable Fredholm modules. This happens in particular in Quantum
Field Theory (the case of the algebra of quantum fields in the supersymmetric Wess-
Zumino model is such an example and has been analysed in [29] [30]). However, it may
be possible to find Fredholm modules ( H, D,I") ,with ' D = —DT" asusual, but such
that exp(—tD?) isof trace class for any positive ¢ . Thisis called a © -summable Fred-
holm module over A (the name coming from the analogy with @ -functions ) [25]{26].
As in the finitely summable case, one can define even and odd © -summable modules.
We will restrict our discussion here to the case of even modules. In order to explain
how such a module defines an (even) entire cyclic cocycle (@,,),.y called the char-
acter of the module, the best is probably to give an analogy with the finitely summable
case. Inthe p-summable situation, we saw how to construct a homomorphism 7 from
the universal differential envelope A to a concrete differential algebra A (replacing
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the symbol éa by the bounded operator 3[ F, a] g On the Hilbert space H ) and how to
build cyclic cocycles by using the natural closed graded trace on A . Here, in the case of
© -summable Fredholm modules, the situation is similar, but more involved. One has to
replace Q A by the Zekri algebra €A = QA® QA and the differential algebra A by an
algebra £ = £ @ L where L is a convolution algebra of operator-valued distributions
T'(s) withsupportin R* and valued in bounded operators in H . The homomorphism
7 from €A to L is given by a homomorphism from A to £ and an element of £ of
square 1. One can also define a natural trace T on the algebra £ . The character of the
module ( H, D, T )is then defined as the trace on €A givenby 7(w(z)) , i.e., formally
by the same formula that in the finitely summable case. The analysis required is how-
ever slightly involved and we refer to [25] for the details. The fact that the character is
an entire cyclic cocycle is clear since it is a trace on €A, cf. sect. 7. For each =, one
obtains in this way a (2n+ 1) linear form 7,, on A, corresponding to the monomial
a%8a!...8a™. By definition the components of the character are the members of the
sequence (¢,,), .y Where

1
¢y, =T <n+ 5) Top-

The previous «abstract» definition of 7, allows to compute an explicit expression
for 7,, . Actually, there exist two different formulae for the character. The first one,
given by [25] is the following.

+oo

7‘2"(a0,a1,...,a2") =Tr/ F(im+ o)a’ [ F(im + a),a']...
(69) ~

[F(im + @), 2] elim+e’ dm

7

where F(m) = (D + mI')(D? + m?)~'/2 | The result is actually independent of
a > 0. Notice that,since F2(m) = 1, if we formally permute trace and integration
and set o = 0 the right hand side reads simply

/_;mTr(F(m)ao[F(m),al] . [F(m),a**])e™™ dT";.

The second formula was established in [29] and we describe it below. One first in-
troduce a time variable ¢ and set z(t) = e *¥ze**f where D may be, for exam-
ple, the Dirac operator on a loop space and H = D? is a hamiltonian (laplacian). To
avoid a possible confusion between the time derivative operator d/dt and the deriva-
tion which was called d in sect. 10.3, we change our notations here and denote the
latter by A . Therefore Az = i[D,m]g, Alg = {z,D?] = [z, H]. Itisthen clear
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that A(z(1)) =i[D,z(t)], = et A zetf = (Az)(t). The relation between A and
the time derivative is then the following:

2 (4 = _dz
A%a(1) = [2(1), H] = Z2(1).

The formula for the character reads

57(a%a',...,a*" =

(71) =(-B)~" Tr(I'a® (0T [a'(¢;), DIT [a*(1,), D] ...

O<ty <ty..<ty,<f

T'[a®"(t;,), DlePH) dtydt, .. .d1,,

where a(t) = e"#ae™¥ . The cohomology classes defined by 73" are independent
of B. The link between these two expression has been studied in [28] but seems still
unclear. The last formula is rather appealing from the physical point of view. It can
be obtained formally from ayda, ...da, by replacing da, by Aa,(t;). The above
formula can of course also be written by using a chronological T"-product .

One can also prove {25] that evaluation of the character on an element e of K,(A)
(represented as an idempotent of A) gives the index of the Fredholm operator D} =
(eDe)* .

11. KASPAROV K K-THEORY (GENERALITIES) &

The bivariant theory of Kasparov [38] (called K K-theory) is usually considered
as a quite esoteric subject. However, it is somewhat at the root of most of what we
discussed so far and we could have started the present review by discussing this theory.
Our purpose here is only to give a glimpse of what the subject is, and we follow more or
less the idea developed in [10] and [24]. The present section could actually be read just
after section 2 where we show how to construct the universal differential envelope Q A
as well as the Cuntz algebra QA and the Zekri algebra €A from a given associative
algebra A.

11.1. The group KK°(A, B)

Let A and B be two (denumerably generated) algebras. Then one defines the
abelian group KK°(A,B) = [¢A,K ® B]. For this definition to be meaningful,
we have to give the definition of gA , of K ® B and of the symbol [ ]. gA was already
defined in section 2, it is the ideal of QA generated by the symbols ga,c € A. K®B
denotes the limit of

B (BO> o <M2(B)O> o
0o O O
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K stands for the algebra of compact operators. Finally [ D,, D,] denotes the space
of homomorphisms from the algebra D, in the algebra D, quotiented by homotopy.
Two such homomorphisms ¢, and ¢, arc homotopic if one can find a homomorphism
¢ from D; into D,[0,1] = C([0,1]) ® D, suchthat ¢,_o = ¢, and ¢, = o, .
The above definition is due to [10]. The original definition [38] of K K°( A, B) was
to define it as the abelian group of homotopy classes of quasi-homomorphisms from A
to B . A quasi-homomorphism being itself a pair (p, ¢' ) of homomorphisms from A
into an algebra F suchthatforall a € A, p(a) — ¢'(a) € K ® B. The equivalence
between the two definitions comes from the fact that the Cuntz algebra factorises pairs of
homomorphisms (as we saw in sect. 2). We want to think of an element of K K°( A, B)
as a generalized homomorphism from A to B.

11.2. The case of manifolds

Where A or B isthe algebra C(X) of continuous functions over the manifold X ,
one finds that K K°(C,C(X)) = K°®(X) is the group of K-theory of X introduced
in sect. 9.3, and that KK°(C(X),C) = K,(X) is the group of K-homology of
X introduced in sect. 10.1. More generally, one obtains K K°(C, A) = K,(A) and
KK°A,C) = K°A).

11.3. The Kasparov product for K K°

Kasparov introduced a map
KK°(A,B) x KK%B,C) - KK°(A,0).

This map is bilinear (on both sides), associative and compatible with the bifunctorial
properties of KK (indeed K K is a bifunctor between pairs of algebras and abelian
groups). The original definition of the Kasparov product involving composition of pairs
of homomorphisms is rather involved but in the present framework it just becomes a
composition of homomorphisms (here, one has to prove that working with g% A is equiv-
alent to working with gA , a property which is not obvious). Notice that in the case of
manifolds we get

KK°(C,C(X)) x KK°(C(X),C) — KK°(CC)
but C can be considered as the algebra C (pt.) of functions over a point, so that
KK°(CC) = K%pt.) =2

(since the dimension — an integer — is the only topological invariant of a complex vector
space!). So we recover the ( Z-valued ) pairing between K -theory (vector bundles) and
K-homology (elliptic operators).
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11.4. The group KK'(A, B)

The most direct definition is probably the following:
KK'(A,B)= KK°(SA,B) (~KK°(4,SB))
where
SA={f € Al0,1]/f(0) = f(1) =0}

is the suspension of the algebra A .
Another definition makes use of the properties of algebras extensions: each element
of

KKYA,B)

defines a half-split extension of B by A, ie. an exact sequence

LN
0—»K®B—>DEA—+0

where the lift ¢ is a section but not necessarily an algebra homomorphism (hence the
«half» of «half-split»).
A last definition similar to the Cuntz definition was proposed in [29]. Namely

KKYWA,B) = €A, K ® B).

€A being the Zekri algebraof A.

11.5. The Kasparov product for KK' and K K°

Given these algebras A, B and C, one can define a product x with

KK°(A,B) x KK°(B,C) - KK°(A,C),
KK'(A,B) x KK°(B,C) - KK'(A,0),
KK°(A,B) x KK'(B,C) - KK'(A,O),
KK'(A,B) x KK'(B,C) - KK°(A,0),
of course one could be tempted of defining K K™!(A,B) = KK*(SA,B) for any

n > 1 but it can be proved (Bott periodicity in K K -thcory ) that K K™2(A, B) is
isomorphic with K K™( A, B) sothatonly KK° and K K! are rclevant.
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12. FRONTIERS

In the previous chapters, it has not been possible to cover all possible aspects of this
fastly developing field. In the present section we want to indicate a few other topics
along with some references.

— Yang-Mills equations on noncommutative spaces. The moduli space for connec-
tions minimizing the Yang-Mills functional on a noncommutative two torus (the C*-al-
gebra generated by two unitary operators U; and U, , subject to the condition U,U, =
AU, U, ) has been analysed in [39]. It was shown that it is a commutative torus T2,

— Noncommutative Riemannian structures. The key observation [26] is that if M
is a compact, spin, Riemannian manifold and D is the Dirac operator acting on the
L? sections of the bundle of spinors, it is possible to reconstruct the geodesic distance
d(z,y) between two points from the formula

d(z,y) =sup{|f(y) - f(m); FEC(M), ||D,fli<1}.

The theory can be generalized by replacing the preceding data by an arbitrary un-
bounded Fredholm module over a noncommutative algebra A .

— Dirac operators coupled to connections in noncommutative spaces. If (h,D)isa
«Connes module» for the algebra A (as in sections 10.2, 10.3), then

0 D
F‘[D-IO]

defined on H = h + h is also a left module on A. Moreover, one can consider a
A -connection V on aright finite projective module E (asinsect. 9.4 and 10.5), (A ,8)
being a graded differential algebra with A = A. One can then build the space

EH=E®AH

on which the operator p = V ® iF acts. Notice that p is not a connection in the
general sense but p? = 1 — © where @ is the curvature of V. If we think of D asa
Dirac operator and V as a usual connection, we see that p generalizes the idea a Dirac
operator coupled to a gauge potential [40].

— Group actions and crossed products. Let G be a group acting by automorphisms
in the algebra A (g € G — a(g) € Aut A) . Then we build G x, A as the space of
equivalence classes (g, a) ~ (gk, a( k~1ya) . One can also represent an element )\ of
G x, A asamap from G 10 A equivariant under « . This crossed product is endowed
with an algebra structure under the convolution product

(R = Y- MBah [ah 0.

heG

When A is the commutative algebra C(X) in the particular cases where X/G is
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a «bad» quotient (and where the standard tools of usual geometry break down), the non-
commutative geometry of these crossed products offers a good alternative to the «usual»
geometry of X/G .

Remarks

It should be clear that what we discussed so far are topics belonging to «Noncom-
mutative differential geometry». Indeed, in the study of commutative algebras (i.c., in
«usual» geometry), one usually discusses measure theory before topology, topology be-
fore differential geometry and Lie groups (for example) after differential geometry. The
same Jogical path can also be followed in the noncommutative case.

On one side of noncommutative geometry, we have non commutative measure theory.
Usual measure theory tells us how to get a number o(f) out of a function f (belong-
ing to a commutative von Neumann algebra (8) L of essentially bounded measurable
functions on a space X) via the relation o{ f) = fx f du where 4 is a measure on
X ; g is called a weight on L . The main point is that any pair (L, ) of a commu-
tative von Neumann algebra L and weight ¢ can be obtained as above from a space
X with a measure u . Therefore the classification of pairs (L, ) , with I commuta-
tive, amounts to a classification of measured spaces. It is therefore clear that the theory
of weights on noncommutative von Neumann algebras can be called a noncommutative
measure theory. To make the link with physics, remember that to each weight ¢ on L
corresponds a one parameter group o, of automorphismsof L (o, isthe identity when-
ever L is commutative) and that, in the case where L is a matrix algebra M, (C) and
p is givenby o( f) = Trace( fe ##) /Trace(e #") , then o, describes the evolution
of the system: o,(f) = e"# fe="# . We refer to [42] for a survey of noncommutative
measure theory.

On the «other side» of noncommutative differential geometry we find the so-called
Quantum Groups (cf. [43],[44]). These are not groups but are noncommutative algebras
A on which has been defined a co-product. The group law on a group G is a map
G x G — G endowed with some well-known properties. This can be translated in a co-
product A —* A® A where A is the (commutative) algebra of complex functions on
G (if f € a then A f(g,,9,) = f(g9,9,) ): these co-products have particular properties
obtained by «dualizing» the axioms of a group. Quantum Groups are then obtained by
replacing the commutative algebra A by an arbitrary noncommutative algebra. Quan-
tum Groups (and their representations) seem to play a role in physics (particularly in
relation with two-dimensional statistical models).

(8) Elements of the algebra I can be also considered as operators in the Hilbert space H =
L*(X,u) where they act by multiplication. It is easy to see that L is equal to its commutant L’
in H and therefore also to its bicommutant L” . Hence L is a von Neumann algebra.
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