
JGP - Vol. 6, n. 3, 1989

Noncommutativegeometry
and theoretical physics

R. COQUEREAUX(*)

Gordon McKay Laboratory
Harvard University

Cambridge, Massachusetts02138.U.S.A.

Abstract.Thestructureof amanifoldcanbeencodedin thecommutativealgebraof
functionson themanifold it sell—this is usual—.In the caseof a non com.mut.ative
algebrathereis nounderlyingmanifoldandtheusualconceptsandtoolsofdiffe.ren-
tial geometry(differentialforms,DeRhamcohomology,vectorbundles,connections,
elliptic operators,indextheory... ) haveto begeneralized.Thisis thesubjectofnon
commutativedifferentialgeometryandis believedto beof fundamentalimportance
in ourunderstandingofquantumfield theories. Thepresentpaperis an introduction
for thenonspecialistandareviewoftheprincipalresultsonthefield.

1. INTRODUCTION

The interplaybetweenmathematicsand physics,and in particularbetweengeome-

try and quantum field theory, hasplayedan importantrole during the lastfifteen years.
Mostof the toolshandledby theoreticalphysicistsinvolveusuallyanunderlyingsmooth
manifold of realdimension3, 4 or more (the descriptionof stringtheoryinvolvesioop

spaceswhich areinfinite dimensional).Thegeometricaldescriptionof aquantizedfield
interactingwith severalexternalotherfieldshasreacheda satisfactorystatus(think, for
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example,of a Dirac operatoractingon spinorscoupledto an externalYangMills field);
howeverthis is not yet the casefor a fully interactingquantum field theory (evenin

the <<simple>> caseof quantumelectrodynamicswherewe havetwo coupledequations,
namelytheDirac equationfor ~ coupledto A~andtheMaxwell equationfor A~cou-

pled to thevectorfield ~1.’).At the first quantizedlevel,a field theorycanusuallybe
describedin termsof sectionsof vectorbundlesand of operators(linearor not) acting
on them. At thesecondquantizedlevel, a quantumfield theory, cannotbe describedin

suchsimple terms. Forinstancewhenwe considerthe space F of sections~(x) of

somevectorbundleendowedwith arealscalarproductandbuildthe infinite dimensional

Clifford algebraCliff( F ), thusturningtheclassicalfields ~(r) into (secondquantized)
anticommutingquantumfields, weareno longerdoingsome<<classical>>geometryon a

smoothmanifold.

Ouraim in this introductionis to explainwhatnoncommutativegeometryis about.
Before that, we should remind the following result (Gelfand): all the propertiesof a
spaceX canbe encodedin thealgebraof functions C(X) on this space(1) (andcon-

verselyof course).In particular,the topology,themeasuretheory, (cf. Remarksin § 12),
theDcRhamtheory, the K-theory (ctc.)of a smoothmanifoldof M canbedescribed

(anddefined)directly in termsof thealgebraC( M) of functionson M. For instance

the spaceof sectionsof a vectorbundleover M will be definedas a module— a rep-

resentationspace— for the algebra C(M) (actually it is a projectivemoduleof finite
type cf. §9). C( M) beingacommutativealgebra,usualgeometry(and classicalfield

theory)is, in a sense,a <<commutativegeometry>>. In order to get resultsin noncom-

mutativegeometry,onemay proceedas follows: first choosea geometricalnotionthat

you know how to formulatein termsof a spaceX , thenexpressthis notion in termsof
thecommutativealgebraC(X) , finally, try to definethis notion in sucha waythat it

makessensefor an arbitrarynoncommutative(butassociative)algebraA. Of course,in

this way,usualgeometry(i.e. commutativegeomelry)will appearasaparticularcaseof

noncommutativegeometry.Notice thatphysicistshavealreadyfollowedthis path when

theyhavediscoveredsupersymmetries:indeed,superfunctions(andsuperfields)do not

appearas functionson a usualspacesincethey would makea commutativealgebrain

thiscase.Supergeometry(cf. [1I,[2]) canbe thoughtof asthefirst stepbeyondusualge-

ometry,namelythepassagefrom commutativealgebrato gradedcommutativealgebras.

(1) Let A a commutativealgebraand x be an irreduciblerepresentationof A . Since A is
commutative,we may choosethe complexnumbersas representationspacewhere x actsby
multiplication,i.e., if f belongsto A, x[fj is acomplexnumber.Letus call X(= spA) the
spaceof irreduciblerepresentationsof A ; then, to eachf in A , we mayassociateafunction
on X , still denotedby f via thefollowing beautifullysimplerelation f( x) = x[ f] . Therefore
A = C(X) . More precisely,oneshould take A as aBanachalgebrawith unit andtalk about
maximalidealsratherthan irreduciblerepresentationsbut the ideais thesame.
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Thepurposeof noncommutativegeometryis to go beyondthat and to provideus with
themathematicaltools requiredto studynoncommutativealgebrasasnoncommutative
<<spaces>>.

Usual tools of differential geometryhaveananaloguein a noncommutativecontext
andtheirusein ordertodevelopatheoryof interactingstringshasbeenadvocatedin [3].
However,noncommutativegeometryhasmany morepossibleapplicationsin quantum

field theory,instatisticalphysicsoreveninsolid statephysics(whereit hasbeenusedto
provide anexplanationfor the QuantumHall effect[4]). In mathematics,besidescast-
ing a newlight on a familiar subject(geometryof manifolds),it may beusedin many

situationswherethe usualtoolsof differential geometryfail to apply becausethespace
understudy is not a <<good>> manifold (orbifolds, spaceof leavesof a foliation...) or

becausethereisno manifold at all (an abstractnoncommutativealgebra).Noncommu-
tative geometry(and in particularcyclic cohomology)is also a goodframeworkwhere

to discussinfinite-dimensionalspaceslike the loop-spaceof amanifold M [30]andthis
bringsusbackagainto the theoryof strings.

Ouraim, in whatfollows, is notto describeall the resultsandconceptsof noncommu-
tative geometry(abook would notbeenough)but to describea few topicswhichhave

beenstudiedin the lastfive years. As alreadymentioned,thetools and techniquesof

noncommutativegeometryareoftenthenoncommutativecounterpartsof thoseof com-
mutative (usual)geometry— althoughin manycases,one shouldnotexpectanobvious

generalization!Thisremarkmotivatesthe organizationof this paper.First, the algebra
of functionson a manifold is replacedby an arbitrary associative— butnotnecessarily

commutative— algebraA ; thenwe introducein Section2 theuniversaldifferentialalge-
bra L�(A) andin Section3 the Hochshildcohomology H* whichplaysthe analogue
of the algebraof differentialforms on a manifold. The noncommutativecounterpartof
Dc Rhamcohomologyis cyclic cohomology(or better: periodiccyclic cohomology)

and isdescribedinSections4 and5. This isreplacedin someinterestingcasesby entire

cyclic cohomologywhenthealgebrais <<big>> (Section7). Differentialforms andtheDc
Rhamcomplexarenot theonly toolsof differentialgeometry,onecanindeedprobethe
structureof manifoldsby studyingfiberbundlesabovethem,this leadstothedefinition
of characteristicclassesandto K-theory.Thesamethingis truehereandwedevotethe

last sectionsof this articleto this study; however,theselast topicswill beonly briefly
discussedin orderto keepthe size of this paperreasonable.

Thenoncommutativeanalogueof vectorbundlesis describedin Section9 (and this
leadsinto the definitionof K-theory of algebras).Connections(YangMills fields) are
a handytool in usualgeometry: thenoncommutativecorrespondingconceptis defined

in thesamesection.Indextheoryfor elliptic operatorshasalso anoncommutativegen-
eralizationwhich is describedin Section 10. Finally, it canbe seenthat most ideasfit
beautifully in the bivariant K-theory of Kasparov(KK-theory). Thisdoesnotseem

to bewell-known by physicistsand we concludewith a short introductionto thecorre-
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spondingideas.

Noncommutativegeometryis a branchof mathematicswhich has undergonepro-

foundtransformationsin the lastyearsbut it doesnotseemto haveachievedyet adevel-

opmentsufficient to allow for a nonperturbativedescriptionof a quantumfield theory
like quantumelectrodynamics.Our feeling, however,is that it points in the right di-
rectionand our hopeis to convincethe theoreticalphysicist(for whom this review is
written)that it is so.

How to read thesenotes

In thepresentpaper,wefollow anapproachwhichdoesnotnecessarilycoincideswith
thehistoryof thesubject(for instance,Fredholmmodulesareonly introducedin section
10). Thefollowing wantsto bea tentativelypedagogicalintroductionto noncommuta-
tive geometry(and also tries as oftenas possibleto makethe link with standardtools

usedby theoreticalphysicists).Forthis reason,severalinterestingpoints,althoughlog-
ically situatedin thebody of thepaper,shouldcertainlybe skippedby thenovice. The
readershouldfirst look at the following sections(in this order) andskip the others:

2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 3.1, 3.5, 3.6, 3.7, 3.9, 4.1, 4.5, 4.6, 5.1, 5.3, 5.4, 7.1
(ii), 9.1, 9.2, 9.4, 9.5, 10.1,10.2,10.3,10.5,12.

Thespecialsymbol • hasbeenaddedto the title of thosesectionsthat shouldbe

skippedon first reading.

Remarksand acknowledgements

It is believedthat theformalism of non commutativegeometrywill somedaybe of

fundamentalimportancein orderto formulateour ideasaboutQuantumFieldTheory.
The physicistreadermay be disapointedbecausethis will not be donein the present

review.... On theotherhand,themathematicianreaderhasalreadyseveralreview ar-
ticles at his disposal[8], [II], besidesthebasicreference[7]. Ouraim, here,is mainly
to help thereaderinterestedin non commutativegeometryand to narrow thegap that
mayexistbetweenthestandardmathematicalconceptsknown(andused)by mosttheo-

reticalphysicistsand thosethat appearoftenas a prerequisitefor the readingof articles

suchas [7]. Forthis reason,many resultswill be givenwithoutproof(or only with an
indicationof whattheproofis) butwewill try toput the accentonwhatthemotivations

for the introductionof thesenew conceptsare. Also, wewill use,as oftenaspossible,
<<standard>>geometryas a guideline. As alreadymentionnedpreviously, the following

shouldbeconsideredas an invitation to furtherstudy.

Mostof whatfollows arosefrom discussionswith A. Connes,J. Cuntz,D. Kasi.ler, P.

SeibtandR. Zekri. I would like to thankthem here.
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2. THE DIFFERENTIAL ENVELOPE(S) OFAN ASSOCIATIVE ALGEBRA

2.1. Definition

Let A beanassociativealgebra.Wecanassociatewith it a biggeralgebraL~(A)
calledits differential envelope,thanksto thefollowing construction.To everyelement

a in A, we associatea symbol 6a. ~ (A) , as a vectorspaceis definedas the linear
spanof <<words>>built outof symbolssuchas a and 6a. The multiplication in ~ (A)
shouldsatisfytheusualproperties(associativity,distributivelyover+) (2) butwe impose

thefollowingrelation:

(1) t5a.b = 6(ab) — a.6b.

The above relation allows us to shift symbolslike b to the left and to write any
elementof ~(A) as a linearcombinationof monomialsof the kind a06a1.. . 6a,~or
6a08a1 . . . 6a,~wherethe a< belongsto A. Letus work outoneexample

a0t5a16a2a36a4= a06a16(a2a3)6a4—a06a1a26a36a4

(2) =a06a1c5(a2a3)6a4—a06(a1a2)6a36a4+

+ a0a16a26a36a4.

Noticethat,in relation(1), 6(ab) isjustasymbol(thesymbolthat weassociatewith
theelementab of A in theconstructionof ~ (A)). However, we want 6 to become

anoperator, and this is doneby defining

5(a0rSa1óa2. . . 6a~)= r5a06a1 . . . 6a,~
(3)

6(6a06a1...6a~)= 0.

Notice that (3) implies 62 = 0.
(f~(A), 6) is then a differential algebraand 6 is anodd derivation .This algebra

is in particular Z-graded: ~(A) = ~0~(A)’
5 where~(A)° = A and ~(A)~

denotesthe linear spanof monomials a
0tSa1. . . 6a, or 6a1 .. . 6a~,.Sinceit hasno

morerelationsthanthosecoming from A andfrom theLeibniz rule, the factthat it is
a universalobjectis not too surprising.Here,by <<universal>>wemeanthat it factorizes

derivations: if B is an algebra(it canbe A itself), if a is a morphi smfrom A to
B (it can be the identity) and if D is a derivationfrom A to B twistedby a, i.e.,

(2) More precisely,we could define ~ (A) as the freealgebrageneratedby the symbols a
a E A , modulothe relation (1) andthe relations X.a + ~.b = (Aa + pb) , a.b = (ab)

X.5a+ ji .5b = 5( .\a÷jib) , where . and + denotethe productandsumin the freealgebra.
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D(ab) = D(a)a(b) + a(a)D(b) then, there exist a morphism & from ~(A) to
B suchthat & (a06a1 .. . 6a,~)= a(a0)D(a(a1)) . . . D(a(a,,)) . In particular,if
B is a differential algebraand if thereis a morphismfrom A to B, then B canbe
gotten from ~ (A) by a homomorphismof differential algebra.Thesepropertiescan

besummarizedby thediagrams

f~(A)

/~\

A B

and

~ (A)

/
A -~ (B,d)

with D = cia. Theseproperiesjustify to call Q (A) the <<universaldifferential enve-

lope>>of A.

2.2. Problemsof unit

The reader will have noticed that, for the moment,we did not mention the existence
of a possibleunit in A. In particular,if A is unital, we will call e its unit (not 1)

and its differential in ~ (A) will not vanish (8e ~ 0). But then ~ (A) hasno unit
(e6e ~ 8e) , and we can fix that by addingformally a unit (thatwe call 1) to f~�(A)
with the rule 61 = 0 . The resultingalgebra(the unital differential envelopeof A)
will becalled ~ (A). Of course, we couldalsohavebuilt it by first adding formally a

unit I to A (the resulting algebrabeing A), then constructing~ (A) with theextra

rule 61 = 0 . Of course L~(A) = ~ (A) . Notice that an arbitraryelementof f~(A)

canbe written canonicallyas a sumof monomialof the form ~ 6a~6a2 . . . 6a,~where
= )~+a0, )~= )~.lEC and a~EA.

2.3. Otherconstructionsof ~ (A)

The constructionof ~ (A) describedabove(let us call it constructionNo. I) is

enoughfor calculationalpurposesbut thereexist alternativeconstructionswhich one
shouldbeawareof, eitherbecausetheyarefrequentlyusedin themathematicalliterature
or becausetheycastanotherlight on thenatureof thisuniversalobject. Wewill present

two ot.hermethods.ConstructionNo.2:Call f~0(A)= Aj~~(A)=
with n factors A, n ~ 0 . Thendefine ~~(A) = ~ Notice that, since

A=C+A,wehave L~~(A)=C®A®...®A~A®AØ...®A.Thisshows
that ~2~(A) is isomorphic,asa vectorspace,with A®~~ A®~’. In particular, Q (A)
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cannotbeidentifiedwith thetensoralgebraover A. Of course,thelink with construction
No. 1 is madevia the followingcorrespondence:6a

1t5a2 . . . 6a,~= I ® a~® ... ® a,~

and a06a16a2...c
5a~= a

0 Øa1 ®...®a~, a1 E A. Also,tobecompatiblewith
constructionNo. 1, multiplication from theright by anelementof A is definedby the

following rule:

(a0 ...® a~)b a0 a1® ...® a~b+

+~(—l)~a0~ ®...®a~®b

multiplication in i~(A) is specifiedby requiringthat

(ao®ai®...®an)(bo®bi®...®bm)

Of coursemultiplication from theleft by anelementof A is just gotten by

b(a0 ® a~® . . . a,~)= ba0 0 a~® ... ® a,~.

Construction No. 3: Wefirst consider the multiplication m as a map from A®A to

A by m(a ® b) = ab. Then call ~0(A) = A, ~21(A) = Ker m (notice that in
the exampleA = C( X), Ker m is the space of functions of two variables which
vanishonthediagonalie., such that f(a, z) = 0) . Thendefine ~~(A) = Ker m

®A Ker m and (~(A) = EB,~~ (A) . Notice that theprevioustensorproductsare
takenover A andnot over C as it was before.This last definitionof thedifferential

envelopeseemsmore involved than the previousonebut it is ratherconvenientas we
shallseelater. Here again,monomialslike 6a16a2 . . . 6a,~and a06a1. . . 6a,~canbe

written in termsof tensorproductsbut the correspondenceis not the sameas in the
constructionNo. 2, alsotheproductrule is different. Forinstance,wemay write 6b =

1 ® b — b 0 1 , a6b = a ® 5 — ab 0 1; it is clearthat 65 and a6b belong to Ker m
since m(a®b—ab®l) = ab—ab=0 .lntermsoftensorproducts,theproductrule

is nowgottenby concatenation,for instance:

a6b6c(a®b—abOl)(l®c—c®l)

=a®b®c—ab®IOc—a®bc®1+ab®c®1.

We can go from this expressionto thecorrespondingone in constructionNo. 2 by

killing the <<I>> which are not in first position.
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2.4. The acyclicHochshildoperator

The main thing to remember is that, whatever the way wechooseto realize ~2(A)

the calculation rules are those given at the beginningof this section. Also, it is clear

that ~ (A) comes equipped with a Z-grading which countsthenumberof 6. Since
any element of ~2~(A) canbe written as a linear combinationof monomialsof the
kind ä06a1 .. . 6a,~ and 6a1 .. . 6a,~,it is convenientto write ~(A) = Ac5Q(A) +

6~I(A) . Since we have an operation6 of square zero, it is naturalto computethe

cohomologyofthecomplex ~( A) . From the construction of 6 , it is a priori clear that
this cohomology is just zero. Thiscan also be seen as follows: let w be a monomial of
grade 8w and z an element in A; we define the following operatorin L~(A) (not in

~ (A) since z is not determinedby 6z if 61 is zero).

(4) /3’(w6z) = (—l)~wx.

Notice that if is defined in f~(A) but not in ~)(A) since 6(x) and 6( x + I) are

the same in f~(A) . Then, rules of calculation in ~ (A) show that if6 + ~8’ =

therefore,for any T we get ~‘6r + 6fl’r = r and if 6T = 0 we get ~i- = 6f3’i- which
showsthat thecohomologyof 6 isindeedtrivial (in ~ (A) , this cohomologyis almost
trivial since 61 = 0 althoughI isnotthe 6 of something).Theoperator~3’iscalledthe

acyclic Hochshild homologyoperatorfor reasonswhich will becomeclearin the next
section.

2.5. The Z2-Graded Case

It may happen that A is a Z2-graded algebra. In this case, we may forget the

Z2-graduationand constructthe differential envelopeas above,however,wemay also
usethis graduationandbuild a universalZ2-gradeddifferential algebraassociatedwith

A thatwe proposeto call thedifferentialsuperenvelope.Theonly differenceisthat now,
eq.(1) is replacedby the following

(5) 6a.b= 6(ab) — (—l)~a.6b

where ôa denotesthe intrinsic Z2-gradingof a E A. Thedifferential superenvelope

is also a universalobjectbecauseit factoriesgradedderivations.In what follows, we
will mostlygive formulaevalid in the ungradedcasein order not to clutterthem with
minussigns.Someof theformulaeare anywaythesame,for instanceeq. (4), but now

0w denotesthe total gradingof w , i.e., thesumof the Z— gradingand Z2-grading.
Theconstructionof thedifferential envelopegoesback to Cartanbut it canbe found

in [6,7] under severaldisguises,let us also quote [8,9] for a particularstudy of the
Z2-graded case.
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2.6. Example1: A = C(X)

In orderto illustratethepreviousconstructions,let uscontemplatethe classicalexam-
pleof a commutative algebra A = C( X) where C(X) will denotein the following of
this paper the space of smooth functions on a differentiable manifold X (it may happen

that somepropertiesthat we discusshereand afterhaveto bemodified if the spaceis
biggerthanC°°(X) , sowewill stickto thesmoothcaseforsimplicity butwill mostof
the time drop the cc superscript). The first thing to notice is that A®A = C( X x X)

and (3) more generally A®n = C(X x ... x X) , therefore,in a sense, when we go
from A to ~ (A) wego from aone-bodyproblemtoamany-bodyproblem.Wealready
identified ~ (A) with the functionsof two variableswhich vanishon thediagonal (of
Description No. 3). Indeed if f E A, then, since 6f = 1 ® f — f ® 1 , we get
6f( x,y) = f( y) — f(x) andwecanthereforevisualize 6f as a finite difference.The

Leibniz rule 6(fg) = 6fg + f6g canbetranslatedasfollows

f(y)g(y) — f(x)g(x) =

= [f(y)—f(x)]g(y)+f(x)[g(y)—g(x)].

More generally, elements of ~ 1(A) will be of the kind F( x, y) = G( x, y) —

G(x,x) whereG isanarbitraryfunctiononX xX. Inthesameway,iff,g,h E A,
weget

f6g6h(x,y,z) = f(z)(g(y) —g(x))(h(z) —h(y))

and more generalelementsof ~I2(A) will be of thekind

F(x,y,z)=G(x,y,z)—G(x,x,z)—G(x,y,y)+G(x,x,y)

where G is anarbitrary function on X x X x X. Noticethatsuchfunctionsvanish

on thediagonals(1—2) and (2—3) but not (1—3). This canobviously be generalized.
~1~(A) consistsof thosefunctionson X x ... x X (n+ 1 factors),which vanishon
contiguousdiagonals.To illustrate theuniversalpropertyof ~ (A) , wemay consider
thedifferential algebra A (X) of differential forms over X ; wehaveamapfrom A to
A°(X) which is just the identity i. Then, there is a universal covering homomorphism

I from ~(A) to A(X) such that I (f06f1 . ..6f~) = f0df1 A df2 A... A df~. Of
course,the kernelof this map is ratherlarge: this is already clear from the fact A(X)
has dimension 2dimX but ~(A) is infinite dimensional; also, if w is a <<I-form>> in

(3) Actually, we shoulduse an inclusion signrather than an equalsignbut the equality canbe
madetrueaftercompletion.
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L~(A) — i.e., an element of ~I (A) , its imageunderI .is a oneform 0(w) in A (X)

andis such that 1(w) A 1(w) = 0 , however w2 is not zerobuta well-definedelement

of ~2 (A) . Thissuggeststhat noncommutativeconnectionswill havenewunexpected
features,evenin the<<classical>>casewhere A = C(X) , cf. Section 9.4.

When X is a Riemannianmanifold, we canalsoconsiderthe example where B is

theClifford algebraof thetangentbundleof X. B is not a differential algebrabut
d: f ~ C(X) —~ ~Lf= ~8~f is a derivationfrom A = C(X) to B. Again A can

beidentified with a vectorsubspaceof B and I( f~6f
1 . . . 6f,~) = f0 ~ ...

2.7. Example2: A = C

In theparticularcasewhere X isjust a point, thecomplexalgebraof C(X) is just

thealgebraof complexnumbers.Let us describe~ (C) , the differential envelopeof
C (cf. also [8]). Accordingto Section2.2, let us call e the unitof C andlet us add

an extraunit 1. Elements of ~(C) are linearcombinationsof monomials )~6e+ 6e
or pe6e. . . 6e. We havethe rule 6(e

2) = e6e + 6ee but e2 = e therefore 6e =

e6e+6ee.Wehavenow aninterestingrepresentationof ~ (C) in termsof creationand
annihilationoperators.Indeed,let U bea Hilbert space(actuallyw e will take U = C)

and .F the bosonicor fermionic Fock spaceassociatedwith U; let also f = I E U

and just call a a( 1) , a~= a~(1) the annihilationand creation operators associated

with f = I . Then it is clearthat we may represente astheprojector f (1 + ~ where
-y = (—I)°~°countsthe parity of the numberof particles,and 6e as the annihilation

operatora ; indeedit is easyto checkthat

(l+~ (l+
a=~—~----)a+a~—~—-

Noticethat a monomialof L~(C) will berepresentedas

(~+p (~))a~

where )~, p E C and p ~ N. Setting q = 6e,the defining relationsof ~IC read
+ q = ~, 2 = 1.

2.8. TheCuntz andZekri algebras~

Before endingthis sectionwe want to mentionthat thereexist another<<universal>>

objectassociatedwith anyarbitraryassociativealgebra A, namelythe Cuntzalgebra

Q(A) (which is sometimesdenotedqA). This objectwasdefined abstractlyin [101

but it wasrealizedafterwards(cf. [20,23]) that Q(A) , asaset,is nothingelsethanthe

differential envelope~l (A) , howeverthe productlaw is not the same.Let us indeed
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choosea,/3 in ~A) anddefine

aof3 = a13 if a is even (i.e., a E Q2~(A))

aof3 = a/3+ )~a6/3 if a is odd (i.e., a E fl2,,4.1(A).

In (6), )~is an arbitraryscalarparameter.We call Q(A) the set £~(A) endowed

with the new product; notice that if )~ = 0 , thenbothalgebrasarethe same.Thehighly
nontrivial remark (althoughit takesthreelines to prove it) is that o is an associative

product: a o (/3 o ‘i) = (a o /3) o ‘y. ThereforeQ(A) is anassociativealgebra
and appearsasa deformationof ~�(A); in whatfollows let uschoose)~= —1 . Let a

and S betwo elementsof A, then from (I) and (6) we get

(7) 6(a a b)6a o b+a o 6b+6a o 6b.

In thecaseswherethereis no risk of confusion,we maycall <<.>> the product in Q(A)

and <<q>> the differential 6 (to remind us where we are!). Then (7) reads

(8) q(a.b) = qa.b+ a.qb+ qa.qb.

Noticethat q appearsnaturallyasan infinitesimalhomomorphism.Indeedif u is a map

satisfying u( ab) = u(a)u(S) , then setting u = 1 + q leadsdirectly to eq. (8). Like
cZ(A) ,thealgebras Q(A) isthelinearspanofmonomialsofthetypeqa1 . . . qa,, orthe
type a0qa1 .. . qa,, andwemay write Q(A) = Aq(A) ~ q(A). Calling ~I.,,=

and = Q(A)~. we noticethat Q(A) is no longergradedbut only filtered: we
have ~ but Q~Q~C ~ so that Q(A) bearsthe sameanalogy
with ~1(A) as the Clifford algebracomparedwith thealgebraof exteriorforms. The
maininterestof theCuntzalgebraQ(A) is that it factorizespairs of homomorphisms.

Let indeedço and ~ be two homomorphismsfrom thealgebraA into the algebraB

then ic = — ~ is not a homomorphism,indeed ,t(ab) = ço(a)i~t(b)+ s~(a)~(b)+

,t(a)ic(b) (in particularif A = B and ço = 1 then it satisfiesthesameproperties
as q). Obviouslywemay replacethe data (p,~) by thedata(~, it). Universalityof

Q(A) meansthatthereexistamorphismii from Q(A) to B suchthat ~(a) = u(a)
and ic(a) = u(qa)

Thiscanbe summarizedby thefollowing diagram

Q(A)

/
p

A B

This propertyallows a very simpledefinition of the KasparovKK°-group or for
that mattersK°-groups, cf. Section 11. Besides,as weshall seelaterwhenwe de-

scribecyclic cohomology,it is sometimeseasierto use QA than ~ A. A lastuni-
versalobjectthat onecanassociate[28] with an arbitraryassociativealgebraA is the
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Zekri algebra e(A) = Q(A) xa Z
2. Here a denotesthe following involutive au-

tomorphism: cr(x°qx’ . . . qx”) = (—l)~(x°— qxo)qxl . . . qx’~ ; a(qx’ .. . qx”) =

(—l)~qx’ . . . qf. c(A) is then definedas the cross-productof Q(A) and Z2 , i.e.,

oneidentifies(w,±I) with (a(w),—(±I)). Asavectorspace f(A) = Q(A)~Q(A)

but asanalgebra,it canbedescribedasa Z2 -gradedsubalgebraof thespaceof 2 x 2
verticeswith elementsin Q(A)

w0,w1 E Q(A) —~ E c(A);

a(w1) cr(w0)

thegradingis of coursegiven by

11 0

F=Lo —l

This algebracanbeusedto describecyclic cohomology:asweshallseelater, cyclic

cocycleswill berelatedto <<gradedtraces>>on ~ (A) but to usualtraceson Q(A) or
~(A) dependingupon theparity of the cocycle. �(A) was first introducedin [24] to
allow a simpledefinitionsof the KK 1 groups(cf. Section 11).

2.9. Exteriordifferential formsandderivations•
In the casewhere A = (j°°(X) , we know thatdifferential forms canalso be de-

fined as A-valued antisymmetric R-multilinearforms actingon vectorfields; the vec-

tor fields themselvescanbe definedasderivationsof thecommutativealgebraA. Let
us mimic the aboveconstructionin the noncommutativeset-up. A being an asso-

ciative algebra,let L = DerA be the spaceof derivationson A (~~ L ~ Va,

b E A, ~(ab) = .~(a)S + ae(b)) ; L is the noncommutativeanalogof the spaceof
vectorfields.Let A ~(L, A) bethespaceof antisymmetricmultilinearformson L and
valuedin A i.e.,

,~,,) =

Thewedgeproduct A and thedifferential d on A *( L, A) arethendefinedexactly
asin the standardcommutativecase;forexample

(n+ m)!
A(X®p)

72.7Th.

whereA is theantisymmetriser;alsoif a E A , we define (da)(~)= ~(a) andextend
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it to thewholeof A ~.

n+1

,4\(C C C \— ~‘ I\i~C (C C C
‘~ 1’~2’”~,Sn+11 ‘.~ / ~ “~n+1

i=1

+~(—l)1~’~([~
11,e1,...~ .

Wecouldcall A *( L, A) thealgebraof exteriordifferentialformson A. Noticethat

by universalityof thealgebra~)(A) (cf. Section2.1), wehaveamorphism a06a1

6a,, E (~�(A) —~ a0 da1 A••• A da,, E A ( L, A) mappingthe <<universaldifferential

forms>>ontothe <<exteriordifferentialforms>>. Notice,that the complex A *( L, A) can
be consideredas a particularcaseof the complex A *( L, E) of Chevalley-Eilenberg,
whereL is aLie algebraand E is amoduleover L. On theotherhand,L = Der( A)

is not usuallya A-module (i.e., if ~ ~ L and a E A, then a~is not usually a

derivation). Moreover,evenif it is a A-module and if w E A*(L,A) and a E A,

then w(a~) is not necessarilyequal to aw(~); it is thereforenatural to introduce
AA( L, A) C A (L, A) by requiring A-linearity ratherthan only C-linearity (in the

casewhere L is a A-module); in this lastcase,onecanevenbemorerestrictiveand
define ADR( L, A) as thesubalgebraof AA( L, A) linearly generatedby totally de-
composabletensors:in this way weobtainthe classicalDeRhamcomplexin thecase

A = C°°(X) . Theaboveconstructioncanbenicelygeneralizedto thecasewhere A is
Z2-graded and is particularlynice when A is gradedcommutativealgebra(wecould

considerA asan algebraof functionsovera superspace),cf. [8] [17].
AlthoughthealgebraA (L, A) plays animportantrolein thestudyof commutative

differentialgeometry,its importance,in thenoncommutativecontentis weakenedby the
factthatmany algebrashaveno derivationsat all (for examplethecomplexnumbers),
in thosecases,theuniversalmap Q (A) —~ A (L, A) isjust zero! This is not therefore

the right way of introducing differential forms in the mostgeneralnon commutative
framework. Nevertheless,we will see in Section3 that it is possibleto definefor any

algebraA a complex H’(A) calledtheHochshildcomplexwhichplaysin all casesthe
roleofthecomplexof differentialforms. At alaterstage(Section4) wewill introducean
operatorB on H*(A) which will play the roleof theDe Rhamboundary.In the cases
wherethealgebra A hasenoughderivations,it becomesusefull to considerA ( L, A)

cf.[47].

3. HOCHSHILD (CO).HOMOLOGY OF AN ASSOCIATIVE ALGEBRA

3.1. Motivations

In the simplecaseof <<commutative geometry>>,westartfrom acommutativealgebra

A (usuallythe algebra of functionsoversomemanifold X). We have already con-
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structedthe differential envelope Q (A) but we shouldbe ableto constructalso the
algebra A(X) of differential forms, in a way which canbe generalizedto the non-
commutativecase(andthereforein a way which doesnot makeexplicit referenceto

themanifold X). Roughly speaking,as weshall seebelowthe Abeliangroups A t(X)
will appearastheHochshildhomologygroups H~(A) of thealgebraA. Therearesev-

eralequivalentdefinitionsof Hochshild(co)-homologyandit is usefulto look at several

of them in orderto readandusetheexistingliterature.

3.2. HochshildcohomologyofanalgebraA with coefficientsin a bimodule .Pvt •
Thisdefinition is slightly too generalforourpurposesbutit is standard.Weconsider

thespaceC”(A, fyi) of n-linear maps T( a
1,a2,... , a,,) from an algebra A into a

bimodulefyi (i.e., weknow how tomultiply from theleft andfromtheright by elements
of A). Then we call (bT) the (n+ 1)-linearmap:

[bTJ(a1,...,a,,~j)a1T(a2,...,a~1)+

(9) + i=I (—l)’T(a1,...,a~a~~1,...,a~1)+

It is easyto seethat the operator S has squarezero and we definethe Hochshild
cohomologygroups H( A, fyi) as thecohomologyof the complex C( A,fyi)

3.3. Hochshild cohomologyof an algebra A •
This is thedefinitionthat we areinterestedinandit canbegiveneitherasaparticular

caseof thepreviousone,or directly. As a particularcaseof 3.2, we mayconsider fyi

asthe(algebraic)dual A of A. It is indeeda bimodulesinceif a, b E A and ço ~ A
t

wehave apb E At definedby (açob)(c) = p( bca) . Now, we mayconsiderelements

T E C~(A,At) as (n+ I) linearformson A:

(10) T(a
0,a1,.,. ,a,,) = [T(a1,... ,a,,)](a0) E C.

RatherthandefiningthecoboundaryoperatorS in termsof T. wecanthereforedo
it directly in terms of ~:

[bT](a0,...,a,,~1)r(a0a1,a2,...,a,>~1)+

(11) ~

a0,... ,a,,).

As a particularcaseof 3.2, we call C’>~’(A) = C~(A,A’) and H*~(A)

H’(A, A
t) whereweno longermentionthebimoduleAt.



NONCOMMUTATIVE GEOMETRY AND THEORETICAL PHYSICS 439

3.4. Hochshild homology of A in the tensorial algebra •
We may considern-linear forms on A as I-linear forms on A®~,therefore,by

duality,wedefinethe Hochshildhomologyoperatorj3 : A®’~ —~ A®n as

(12)

+ (—l)~(a,,a
0®...®a,,1).

Of course,theoperator /3 has square zero andthehomologygroupsaredenotedby

H~(A).

3.5. Hochshild homologyand cohomologyof A defined in the differential envelope
~(A)

Letusaddaunitlto A andcallA = A+ Cl theunitalextensionofA. The
Hochshildhomologyof A can bedefinedas in 3.4,however,it canbeshown [11] that
onedoesnot looseanything by consideringthesubcomplexof ~,, A ® A~gener-
atedby elementsof the kind a0 ® a1 ... ® a,, where I canonly be in first position.

This suggeststhat Hochshild homologyof A canbe defineddirectly within the dif-
ferentialenvelope ~ (A) (as it is donein [8]). Moreover,if werepresenttheelement

a06a1 . . . 6a,, of ~l(A) by a0 ® a1 .. . ® a,, , we see, using (1), than(4) is almostequal
to (12)exceptfor the lastflip-over term.TheHochshildboundaryoperator /3 canthen
bedefined directly as follows (compare with 2.4) in ~l~(A) . Let w be a monomial of
grade Ow and x anelementin A , we set

f3(w6x) = (_I)0(~~[w,x]
(13)

/3(x) = 0.

It maybeusefulto introducethe<<flip-over>> operatora

(14a) a(w6x) = (_I)&)xw.

Then /3 = /3’ — a where /3’ was introducedin Section2.4. Notice that /32 =

= 0 but thehomologyof /3’ is trivial (astheone of 6, and for thesamereason,

cf. Section2.4). We could think that the HochshildcoboundaryoperatorS is defined
by taking thetranspose/3~actingon formsoverthedifferential envelope;althoughthis
is possible(anddoneby severalauthors),thecohomologythatwewould get is slightly
<<too big>> (in a sensewewould beovercountingthecomplexnumbers:thiscomesfrom

thefact that it is enoughto know the valueof a form ~ on elementsa06a1 . . . 6a,, -~

a0®a1...®a,, andnotnecessarilyon6a1...6a,,~l®a1...®a,,,withI eC).
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In suchacase,it couldbeconvenientto definein turn <<reduced-Hochshildcohomology
groups.>>Ratherthandoingthat, we follow [7] or [8] and definetheHochshildcomplex

asfollows: first theHochshildco-chainsof degreen will bethoseforms ~ or Q~(A)
whichvanishon thepart 8~l~(A)(rememberthat ~~(A) = A6~(A)+ 6~l(A)) i.e.

o6 = 0 , thenthecoboundaryoperatorS is definedasthe transposedof /3 restricted

to A6Q(A) ,i.e.,

[~is a Hochshild cochain] .~+Vw~ c2(A)~(6w)= 0

(l4b) [~ is a Hochshildcocycle] ~ [~ is a Hochshild cochain and

Vw E ~(A),[bço](w) = ço(/3(�w))= 0]

where� is theprojectorof ~ (A) onto AQ (A) . Wewarnthereaderthat thenotation

Ht(A) for the Hochshildcohomologygroupsis unfortunatelynotstandard(someau-
thorscall it HH( A) or Ht( A, A*) ) andH( A) sometimesdenotesthecohomology
of /

3~(in whichcase H(A) denotesthe reducedHochshildcohornology). Oftenone
saysthat ço is <<closed>>if it vanisheson 6~(A) ; it shouldberememberedthatit means

<<closedfor 6>> andusuallynot for S. In whatfollows, we shouldrememberthat there
isa onetoonecorrespondencebetweenHochshildcochainsdefinedas (n+ I) forms cc
on A or as forms ~ on thesubspace~I~A of theuniversaldifferentialalgebra QA.

Moreprecisely
c~(a06a1...6a,,) ço(a0,a1,...,a,,)

where a1 ~ 1, i > 0. Wewill usuallynotdistinguishbetweencc and ~.

WhenthealgebraA is Z2 graded,onecandefineasfollows theHochshildoperator

(bcc)(a0,ai,... ,a,,,a,,+i)=~(—l)~cc(ao,...,a1a1÷1,...,a,,~1)—

~

whereOa, denotesthe intrinsic Z2 grade(0or 1) of theelementa,.
The Hochshilddimensionof analgebraA is definedastheintegerp (possiblyinfi-

nite) suchthat H~(A) = 0 if n> p. As weshallseelater, in thecasewhere A isthe

algebraof functionson a manifold X , wehavep = dim X.

3.6. Hochshild cohomologyof the algebra of complex numbers

This is a continuation of theexamplestartedinSection2.7. Usingeq. (13)andcalling

q= 6� (asin[8]),we find

/3(e) = $(q
2”~’)= /3(eq2~~’)= 0, n� 0

/3(eq2~)= eq2”’, n~I

/3(q2~)= (2�— 1)q2~~, n~I.
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Therefore,at thehomologicallevel, we find immediatelythat Z
0 = C, Z2,, =

0, Z2,,÷1= B2,,÷1= C + C and therefore H0 = C, H,, = 0, n> I . Noticethat,at
the cohomologicallevel,one finds Z°= C, Z

2’~= B2~= C + C (or C if we use S
ratherthan/3t)and Z2”~= 0. Inanycase,wegetH° = C, H~= 0, n� 1.

As announcedin 3.1, Hochshildhomologyshouldbethoughtof asthe right gener-

alizationof theconceptof differential forms. Theaboveresultfor the algebraA = C

shouldthereforenotbetoosurprisingin viewof the fact that A is indeedthealgebraof
functionsoveramanifoldwhichisjustasinglepoint (its algebraof differentialformsis

thenessentiallytrivial, but in dimensionzero).

3.7. Hochshildcohomologyof the commutativealgebraA = C~(X) where X is
a smoothmanifold

When A = C°°(X) , we alreadyconstructedthedifferential algebra(~(A), 6).
Howeverthis algebracannotbe identifiedwith the algebraexterior forms A *( X) —

althoughthereexistsauniversalmorphismfrom the formerto the latter. Indeed ~l(A)

is <<too big>>, it is infinite-dimensional,whereas,taking for exampleX = R~,we get
dim( A *X) = 2~In otherwords, thekernelof theuniversalmap is ratherlarge. For
example,thefollowing element /3(w) is nonzeroin ~1(A) but its image in A(X)
vanishes.

w = a
06a16a26a3,

/3(w) = [a06a16a2,a3]

/3(w) =a06a16(a2a3)— a06(a1a2)6a3+

+a0a16a26a3 —a0a36a16a2 ~0

but

a0da1Ad(a2a3)—a0d(a1a2)Ada3+

+ a0a1da2 A da3 — a0a3da1 A da2 = 0.

As announcedin 3.1, the complexof Hochshildhomologygroups H~(A) should
play the role of the De Rhamcomplex A’(X) of differential forms on X. At the

cohomologicallevel,wehaveof coursea dual situationand H(A) will appearas the
complexof DeRhamcurrentsA~(X) . DeRhamcurrentsare, in a sense, distributional

forms[12,13].Theyarethedualofforms.If C isacurrentandw isaform,then(C,w)
is anumber. Noticethat weshouldnottalk (yet)of the<<complex>>of Hochshildgroups
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sincewe havenot (yet) definedany operatorplaying the role in the noncommutative
case of the De Rham exterior derivative d. This will be donein thenext chapter.To

convincethereaderthat HochshildcocyclesindeedbehaveasDc Rhamcurrents,let us
first considertheactionof /3 on themonomial fäg6h of ~

2(A) . As wesawin 2.6,
this monomialcanbe thoughtof as a functionon themanifold X x X x X vanishing

pairwiseon contiguousdiagonals:

[f6g6h](x,y,z) = f(x)(g(y) —g(x))(h(z)—h(y))

/3(f6g6h) = (—l)~[f6g,hI = —f.6g.h+h.f.6g

= —f6(gh)+ fg6h+ hf6g

Wegeta functionon X x X which readsexplicitly

[13(f6g6h)](x,y) =—f(x)(g(y)h(y) —g(x)h(x))+

+f(x)g(x)(h(y) —h(x))+

+h(x)f(x)(g(y) —g(x)) =

=—f(x)(g(y) —g(x))(h(y) —h(x)).

A furtheractionoftheoperator/3 would give zero as it should(thelasttermbecomes

h(x) — h( x)). Now let C bea two-dimensionalDc Rhamcurrent,wemay associate
with it thefollowing forms cc on ~ 2 — adistributionon

ço(f6göh) (C,fdgAdh);

from theknownpropertiesof d and A let usshow that bcc = 0

[bcc](f°6f’6f26f3) = cc(/3(f°6f16f26f3))=

= cc([f°6f’6f2,f3]) =

= cc(f°6f16f2f3)— f°6(f’f2)6f3+

+ f°f16f26f3— f°f36f’6f2) =

= (C,f°df1Ad(f2f3))—

— (C,f°d(f’f2) Adf3)+

+ (C,f°f1df2Adf3) — (C,f°f3df’ Adf) =

= 0.
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Moregenerallyto any h-dimensionalDc Rhamcurrent C, one associatesthe fol-
lowing Hochshildcocycle ~ E Zk(A) (adistributionover

(15)

Conversely,givenan elementin Hk( A) , we choose a representative ço anddefine

the Dc Rliam current C as

(16) (C,f°df’ A... A dfk) = ~ (fO5fO(I)
6fa(k))

(For amorerefined anddetailedtreatment,cf. [7]). Considering~pasa distribution
on x~ , wecouldalsodenote ~c(f°6f’ .. . 61k~by anexpressionlike

fXk+ w(xo,...,xk÷I)f°(xo)f
1(xI)...fk(xk) fi dz~

and eq.(16) showsthat thesupportof cc is contained in the diagonal of X~1.

3.8. Hochshild(co)homologyof thealgebraA (X) of differential forms •
In the last subsection,we sawthe Hochshild homologyof the commutative alge-

bra C°°(X)wasrelatedto the setof differential forms A(X) ; but this set, endowed
with the laws of additionand exteriormultiplication is itself a noncommutative(and

Z
2-graded)algebra.It is thereforenaturalto study its own Hochshild(co)-homology.

Let us remember(Section2.5) that when the algebra A understudy is Z2 -graded,

onemay constructtwo kindsof differential envelopes:the Z2-graded one(<<superen-

velope>>) andthe nongraded one. In the Z2-graded case, it is natural to define the
Hochshildoperator/3, not by eq. (13) but by the following:

(17) /3(w6x) = (—1)
8~’[w,x]g

with

[w,x]g = wx — (_l)~OWzw

wherethe commutatorhasbeenreplacedby the gradedcommutator[8]. The corre-

sponding(co)-homologyis the called Z
2-graded Hochshild (co)-homologybut to be

consistentwith the physicists’straditionwe shouldcall it <<superhomology>>.Actually,

onealso introducesin the caseof the algebraof differential forms, a Hochshild<<hy-
perhomology>>which usesthe factthat A(X) isnot only an associativealgebrabut a
differential algebra,sothat ~~A(X)) canbe equipedwith two kindsof differentials

(d and 6). TheHochshildhyperhomologyof the algebraof differentialforms is re-
latedto theusualhomologyof the freeloopspaceof X which playsanimportantrole

in stringtheory. Wereferto [14—16]formoredetails.
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3.9. Remarksabout differential forms in a noncommutativecontext •
1) In the commutative case, calling A = C~(X),X being some manifold of

dimensionn, we know that the space A ( X) (x0) of differential forms at the point
~ X haddimension2~.Since A(X) H(A) ,we may use H(A) to define

dim X indeed AP(X) = 0 if p> n. As in 3.5, if A is noncommutative, we define

theHochshilddimensionof A asthe integer n such that H~(A) = 0 if p> n.

2) If A is an algebra,then the setof m x m matriceswithelementsin A is also
an algebra (all the algebra we are dealing with are supposedto be associative)and it is
natural to ask what the Hochshildcohomologyof M,,(A) is. It canbe proven that it
isjust the same. This suggeststhedefinitionof <<Morita-equivalence>>:two algebrasA
and B will be equivalent if A ® K B ® K where K is the algebra of compact
operators on a Hubert space. A ® K can be thought of as a spaceof matrices of any
size with coefficientsin A.

3) The previous remark tells us in particular that if A isa complexClifford algebra

associatedwith a nondegeneratescalarproduct, then H,(A) = C if * = 0 and 0
if * ~ I . Indeed, we know that A is isomorphicto a matrix algebraover C (or

over C+ C) , then,by Morita-equivalenceH~(A) = H~(C) and we usetheresultsof
Section3.6.

4) Noticethat if f,g,h E A,arid f’ = f+(gh— hg),then, bf’ = Sf = since

gh — hg = b(g6h) by eq. (13). Therefore,one alwayshas H0(A) = A/I A,A] where

A is the subspace of A spannedby all commutatorsin A (gradedcommutatorsif we
arein the Z2-gradedcase).

5) In the casewherethe algebra Der A of derivationsof A is not zero, wehave
definedin2.9a spaceA (Der A,A) of exteriordifferentialforms.Thereaderis invited
to notice the differencesbetweenits definition and the constructionof H(A) ; both

notionsareintimatelyrelatedwhen A = C~(X)

6) Notice that we do not know yetwhat is the noncommutativeanalogof the Dc
Rhamboundaryoperator8 on currents(or, from the dual pointof view, the analogof

the Dc Rhamcoboundaryoperatord on forms). In otherwords we do not know yet
how todefineDcRhamCohomologyina noncommutativeset-up.Theansweris Cyclic

Cohomologyand is thesubjectof the next section. Thenon commutativeanalogueof
O will becalled B.

4. CYCLIC COHOMOLOGY

When A = C°~(X), Dc Rhamcocyclesare in particular (equivalenceclassesof)

differentialforms w andsince H(X) ~ A (X) it is thereforenatural,in thenoncom-
mutativeframeworktotry to definecycliccohomologyasasubcomplexof theHochshild
complex(or, at thehomologicallevel,asa quotientof theHochshildcomplex). Actually,
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thereare otherequivalentdefinitionsthat will begivenbelow.

4.1. The cyclic subcomplexof Ht(A)

Noticethatthecyclicgroupoforder n+ 1 actson thespaceof monomialsofthekind

a
0®a1 ...®a,, (cf. constructionNo.2of ~~(A) inSection2.3)viaa0®a1...®a,,

a,,® a0 . . . ®a,,_1 . Following [7], let usdefinethecyclicity operator)~as (—1)~times
thegeneratorof thecyclic group (4) actingon ~ (A) i.e.,

(18) .X(a06a1 . . . 6a,,) = (—l)~a,,6a06a1. . .

and,moregenerally

(18’) ~(w6x)~(—l)
1~’x6w, xEA, wE~I(A).

At thedual level, theoperator)~actson forms cc on ~l(A) as folows:

(19) E)~cc](w) cc~w).

WhenA is Z
2 graded,andif weexpresscc asa multilinearform,thesameoperator

)~acting on cc canbewritten asfollows

Notice that (18’) implies )~(6a1. . . 6a,,) = (—I)~a,,6
2a

16a2... = 0 . The form

cc is said to becyclic if cc°~’= cc~Notice that if cc is cyclic, it vanishesoverel-
ementsof the kind 6a1 . . . 6a,,, it is therefore automatically a Hochshlld cochain(of
Section3.5 andeq. (14)). It is thereforenaturalto studythe restrictionof theHochshild

coboundaryoperatorS to thespaceof cyclic forms.Themain observationis that if cc
is cyclic, sois

5cc (useeqs. (13), (14)and(19)): thesetof cyclic formsis a subeomplex
of theHochshildcomplexandits cohomologyis calledcyclic cohomologyanddenoted

H~(A)(orsometimesHC*(A)). Beingasubcomplex,itmaybethatH~isnottrivial
evenif Ht is. The gradedcommutatorin the Z-graded algebra~ (A) is definedas
follows: [w

1 , w2‘g = w1w2 — (—1) ‘a” ~2w2 w1 . Noticethat if cc is a cyclic cocycleit

vanisheson 6~(A) . Now, from thedefinitionof S (and /3), weseethatit vanisheson
gradedcommutatorsof thetype [w, Z]g~ x ~ A, but also,usingcyclicity, it vanishes
on gradedcommutatorsof the type 1w,

6x]g , andthereforeon all gradedcommutators.
It is not too difficult to show that thesepropertiescharacterizethe cyclic cocycles. In

otherwords,wecouldhavedefinedthecyclic cocyclesof degreen asgradedtracesof
dimensionn on the algebra Q(A) that vanishover 6~(A) . (A gradedtracebeing

by definitiona form vanishingovergradedcommutators.)

(4) Thereadershouldbewarnedthat, in ref. [7], the symbol )~denotesthe cyclic permutation,
withoutthe sign (—I)~.
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4.2. Cyclic homology •
Of courseit is possibleto defineadual theoryatthehomologicallevel; however,since

thecycliccomplexis a subcomplexoftheHochshildcomplexatthecohomologicallevel,
it will appearas a quotientat thehomologicallevel (5). Specifically, the cyclic chains

will appear,as elementsof ~ /(1 — )~)A®n~. In thenextsections,wewill stay

atthecohomologicallevel ratherthanhomologicalbecausethecalculationsareusually
simpler. Before ending this subsection,let us mentionthat wheneveronecandefine
cyclicobjectsin acategory[18],i.e., wheneverwehavea simplicialcomplex X,, (with
faceanddegeneracymaps)andanextrastructuregivenby anactionof thecyclic group

of order n+ 1 on X,, , onecandefinenotonly theHochshildhomologyofthecomplex
butalsoits cyclichomology[18,14, 19]. Thisgeneraltechniqueleadsto ~ (A) when

thecyclic object(called A in [18]) isbuiltoutofanalgebraA by taking X,, A®’~

4.3. Cyclic cohomologyand the Cuntz algebra Q(A) •
In Section2.8 we introducedthe Cuntzand Zekri algebras.Q(A) and c(A) . We

will indicatenow how theycanbeusedto describecyclic cohomology.Indeedlet T be
atraceonQ(A) ,thendcfinecc(w) = T(6w) if wE ~(A) isevenandcc(w) = 0

if w is odd. Let usshowthat cc isan (even)cyclic cocycleon A [20]. Assumew and

w’ even,then

cc(ww’) = T(6(ww’)) = T(q(ww’)) =

= T(qw.w’ + w.qw’ — qw.qw’) =

= T(w’.qw + qw’.w — qw.qw’) =

= T(w’6w + (6w’)w)) = T(6(w’w) =

= cc(w’w).

Onehasstill to considerthecasew, w’ odd (onefinds the sameresult)andthe mixed
case(thenço(ww’) = 0 ). Besides,thefactthat cc isclosedfor 6 is obvious.Therefore

cc is indeedan (even)-gradedtrace on ~ (A) vanishingon 6~l(A) , hencea cyclic
cocycle.Onecanshow [23] that theevencycliccohomologycanbereconstructedfrom
thestudyof traceson QA. It is niceto rememberthat thingsare sometimesnicer in

(5)Noticethatif we hadstartedwith a biggerHochshild complex(cf. Remarkatthe endof 3.5)
withoutassumingcoo6 = 0 anddefinedthereforesubsequentlyareducedHochshildcohomology,
therewouldbeno needtodefineareducedcyclic cohomologybecauseof theproperty cc cyclic
—~ ceo8 = 0 . Thestructureis quitetheoppositeatthehomologicallevel (wherethereis no need
to define a reducedHochshildhomologybut wheresomeauthors introducea restrictedcyclic
homology[11]).
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termsof (Q(A) , q) than in termsof (~1(A), 6): in the presentsituation,wedo not

havetoassume6cc = 0 andwe replacegradedtracesby traces.TherelationbetweencA

andtheodd-dimensionalcyclic cohomologyis similarandis studiedin [23]. Noticethat
the aboveestablishesa relationbetweenn-cocyclcsand traceson the ideal of Q(A)

spannedby elementsz°qx1 . ..qx~and qz1. ..qx~thereforeone could be temptedof
studyingtraceson thewholeof Q( A) , notonlyon a particularideal,suchtraceswould
definecocycle for each(even) n. Pursuingthis idealeadsto thedefinition of <<entire

cyclic cohomology>>and wewill cometo it in Section7.

4.4. Cyclic cohomologyvia mixed complexes~

Let(M,b)beacochaincomplex(withb2 = 0, S ofdegree+1)and(M,B)achain

complex(with B2 = 0, B of degree—1); moreover,we assumethat SB+ Bb= 0.

Suchanobject (M, 5, B) is calledamixed complex.To eachmixed complex,wemay

associateachaincomplex(BM A) as follows:

BMn M~~ M~2~

A = b+ B.

ItisclearfromtheabovethatA2 = 0 andthatA maps BMn into BMft+l . Bydef-
iition, thecyclic cohomologyof this mixed complexis thecohomologyof (BM,A);

[11,21]. In orderto justify theterminology,onehasto showhow sucha mixedcomplex
arisesnaturallyin theuniversaldifferentialenvelopeof an algebraA andto provethat

thecyclic cohomologydefinedherecoincideswith the onedefinedin 4.1. Moredetails
will begivenin 5.3.

4.5. Theoperators B~and B

Thenon-antisymmetrizedboundaryoperator B
0

Let A bea unitalalgebrawithunit and ~ (A) its differentialenvelope(if A is not

unital, weadd a unit). Let cc bea normalized(6) Hochshildcochainin degreen+ 1; it
canbeconsideredasalinearformon~l(A) whichcanbewrittenascc(a°, a

1,..., a’~)

= cc(a°6a’ . . . 6a~),a1 ~‘ z,i > 0, z E C. Then B
0cc is the n-cochaindefinedas

follows:

(20) (Bocc)(a°,...,a~)—cc(l,a°,...,a~).

(6) We remindthereaderthat a normalizedHochshildcochainis amultilincarform on the space
of (ao,a1, . .. , a~)which vanisheswhenevera,, i > 0 belongsto the imageof the algebraof
complexnumbersin A.
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Moregenerally,if w denotesanarbitraryelementin (~(A) , wemay define B
0 as

(21) [B0ço](w) = cc(
6w).

Thecyclicly-antisymmetrizedboundaryoperatorB

Let us first introducethe operatorA of cyclic antisymmetrizationwhich is defined
as(7)

(22) A = I + ~ + ~2 + + ~ on

with )~as in eq. (18). At the dual devel, let us also call A theoperator(Aço)(w) =

cc(Aw) . The coboundaryoperatorB is thendefinedas B = 6A in ~ (A) i.e.,

(23) B(a
06a1.. . 6a,,)= ~~~(6a16a1~1 . . . 6a,,6a~.. .

or,atthedual level,as B = AB0 , i.e.,

(24) (Bço)(w) = cc(Bw).

It is now just a matterof algebraicmanipulationsto show that B
2 = 0 and that

Bb = —SB. The readershouldfor instancecompare Bb(w) and bB(w) , with w =

a
06a16a2. Notice that B and B0 areoperatorsof degree —l . We are thereforein

thesituationof Section4.4: calling C~the spaceof Hochshildcochainsin dimension

n (i.e., thespaceof forms cc( a°,.. . , a’~)). Weseethat (C, 5, B) is a mixed complex.
Thedefinition of the operatorsB0 and B in theunnormalizedHochshildcomplexis

slightly moreinvolved. Onehasto set

~

Thenonesets B = AB0 asbefore.But,sinceonly normalizedHochshildcocycles

(where I canonly appearin first position)have a nice interpretationin termsof the

differential algebra ~l(A), wewill notusethis.
Before endingthis paragraphlet usmentiononeuseful propertyof the operatorA

which is a direct consequenceof its definition (eq. (22)): If r is a cyclic n-cocycle,
then Ar = (n+ l)r. Wewill returntothe studyof thepropertiesof the operatorB in

5.5 butmeanwhile,we are readyfor studyinga few examples.

(7) The definitionof A involvesa sign, cf. footnote4 in sect. 4.1
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4.6. Examples

4.6.1. Cycliccohomologyof thealgebraofcomplexnumbers

This is acontinuationof theexamplesin2.7and3.6. Thecyclicity condition cco~=

cc imposescc(q2~~)= cc(eq2~”) = 0 and ce( q2~)= 0 . Therefore,in theodd case

therearenonontrivialcyclic cochains:

C~ — Z2~~1— B2~ — ~y2n+l —A — A — A 11A —

In the evencase, we get ~ = C since cc(eq2~)is not determined.The condition

= 0 doesnotbring anythingnewin this casesince

bcc(q2~)= cc(/3q~’)= 0

and

b~(eq2’~’)= cc(/3eq2~~1)= 0.

Thereforeall cyclic cochainsare cocycles Ci,” = Z?~(=C). Moreover,if ~ E

C~’~’, ~ is zero (and b~= 0). Therefore~ = 0 and ~ = C. Thecyclic co-
homologyof complexnumbersis periodicmodulo2. NoticethatHochshildcohomology
groupsareessentiallytrivial (but in dimension0), butcycliccohomologygroupsarenot.

4.6.2. Cycliccohomologyofthecommutativealgebra A = C~(X)

This is acontinuationof theexample3.7. Letuscall ci (standingfor <<classical>>)the
universalmorphismfrom ~ (A) to A (X). It is instructiveto considerthe following

cases:

B(a
06a16a2) = 6a06a16a2 + 6a16a26a0+ 6a2c5a0t5a1

cl(B(a06a16a2)= 3da0 Ada1 Ada2

and

B(a06a16a26a3)= 6a06a16a26a3— 6a16a28a38a0+

+ 6a26a36a06a1— c5a35a06a16a2

ci(B(a06a16a16a3))= 4da0 Ada1Ada2 Ada3.
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It is clearthat B appearsasthegeneralizationof theDc Rhamcoboundaryoperator
(actually B0 is enoughin this casebecauseof the antisymmetryof A).

At thedual level,cyclic cohomologywill appearhereastheDc Rhamhomologyof

currents. Let C be a k-dimensional currentand cr a (k — I )-form, then (C, dci) =

(OC,ci) where 0 is the Dc Rhamboundaryfor currents.Let cc theHochshildcocycle

correspondingto C (consideredasa gradedtraceof dimensionk on f~(A) , i.e.

(25) cc(fO6fI...6fk)=(C,fOdflA...Adfk)

Then,

(26) (OC,f°6f’...6f~’)=(C,df°df
1A...Adf~)=

(Bocc)(fO6fl...6fk)

However,thecorrespondancebetweencyclic cohomology ofdegreek and De Rham
homologyofdegreek is not one to one. Indeed,let ccl be a k-dimensional cyclic
cocycle,it determinesaDcRhamcurrent C (by eq. 16) whichisclosed. But, in turn, C
determinesacyclic cocycle cc by eq. 25. Theproblem isthat the classof cci — cc is zero

in H’~but not in H~.In otherwords,although cc
1 — cc is anon trivial k-dimensional

cyclic cocycle, its imageunder<<Ci>> (the <<classical>>homomorphism)is trivial. One
canshow that, in this case,thereexists ~ E Hj~

2and an operatorS, from Hj~2

to H~such that (cci — cc) = Sw. We will returnto the definition of S in thenext
section. However, ~ is notdetermineduniquelyand, again,onecanfind ~I E

such that S~= Si~ with ~l — = S~ for some l~E H~4. etc. The resultis
that for eachk, H~is isomorphicto KerO (in the spaceof k-dimensionalcurrents)

~Hk
2(X) ~Hk4(X) s... where Hk denotestheDeRhamhomologyofX.

4.6.3. Z2-graded cyclic cohomologyofGrassmanalgebras

Let usconsiderforexamplethealgebraA C
2 generatedoverthecomplexnumbers

by the elements 1, a, 5, with the relations a2 = ~2 = 0 , aS = —ba. This algebrais

clearly Z
2-graded (we give an intrinsic grade1 to theodd generatorsa and 5). We

will thereforeconsiderthe Z2-gradedcyclic cohomologyof this algebra(super-cyclic
cohomology!)—cf. sect. 2.5 and 3.8.

At the lowest level, a zero cochain cc shouldsatisfythe relation bw(ao,a1) = 0

but, by definition of b, this is nothing elsethat the gradedcommutatorof a0 and
a1 . This gradedcommutatoralways vanishessincethe algebrais gradedcommuta-
tive. Therefore,H~is generatedby the classesof the linear forms ccl cc,, cc,,

5
where cc~(v)= 1 if x = y and 0 in theothercases.Notice that cc,,5 is the Berezin
integral(definedup to scale)associatedwith this setof generators.We canwrite H~°=

C2~C2. It is convenientto single out the cohomologyof the subalgebraof complex
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numbers(generatedby the element1) and write HA° = C ~ C~C2.At the next or-
der, weobservethat cyclicity (cc)’ = cc) imposesthe following constraints.cc( I, 1) =

—w(l,1),cc(I,a)——cc(a,l),w(l,b)——w(b,l),cc(l,ab)——cc(ab,l),cc(a,b)
cc(b,a),co(a,ab) = —cc(ab,a),cc(ab,ab)= —cc(ab,ab). This implies in particu-
lar that cc( 1, 1) = cc(ab,aS) = 0. Also the Hochshildcondition 5cc = 0 implies

cc(l,ab) = 0 ;this comesfrom [bcc](l,a,b) = 0 ,indeed [bcc](l,a,b) = cc(a,b) —

w( 1, ab) — ço(S,a) = —cc(1, aS) . TheHochshildconditionalsoimplies w( I , a) = 0

this comesfrom [bce](1, 1,a) = 0 . In the same way w( 1, 5) = 0 . The space
of cyclic cocyclesis thereforegeneratedby threeevencocycles cc~ cc2 cc3 and
two odd cocycles cc4 and ws which do notvanishonly on the following arguments:

cci(a,a),cc
2(S,S),cc3(a,b),cc4(a,ab)= —cc4(ab,a),ccs(b,ba) = —cc5(ba,S).

Since,from theotherhandthe spaceof 1-cyclic coboundariesis clearly zero,we get
= C

3~C2. Onecouldcomputein thesameway H~,H~etc. Actually, thereis a
shorterway which usesthe resultof the Z

2 gradedcyclic cohomologyof A C along
with a Kunneth formula [33]. Before statingthegeneralresult, let us noticethat, the

complex H~being Z2 -graded,it is convenientto introducea Z2 -graded Poincard

polynomial. When V~is a Z-graded and Z2-gradedvectorspace,onedefinesthe

following polynomial. P(V*)(t) = E,,(dim(V’
2)~+ 6dim(V”))t’~ where 6 is

the generatorof Z
2( O~= I . Thegeneralresultfor the GrassmanalgebraA C’~ is

H~(A C~)= H~(C) + V* wherethe first termdenotesthe cycliccohomologyof com-
plex numbers(cf. section4.6.1)andwherethesecondtermisagraded(and Z2-graded)

vectorspacewhosePoincardpolynomialis

P(t) = [2r_1(l+6) —(1 —tY]/[(l+t)(1 —tfl]

One finds, [33], that in thecaseof AC,

P(t)=(9+t)/(I—t
2)=O+t÷6t2+t3+0t4÷t5+...

IntheparticularcaseofAC2 ,weget P(t) = (1+20)+(3+28)t+(3+49)t2+
(5 + 86) t3 + ..., in accordancewith ourpreviousexplicit calculations(noticethat, at
order2, the cohomologywill be H~= C~ C3 ~C4

The Z
2 -gradedcyclic cohomologyof Clifford algebrasG( n) isactuallymuchsim-

pler. Oneproves [33] that H~is generatedby 1, ST, S
2T, r,... where r is the

gradedtracedeterminedby r( ‘~ ~2 ‘Yn) = 1 and T (other generators)= 0. For in-
stance,in thecaseof thealgebraG(4) generatedby thesymbols ~ i = 1 . . .4 , with
therelations‘y~= l,’~y,’y

1+‘y~’y~= 0,i ~j,onecanchcckthat ZA°= C isgener-
atedby r with r(l) = r(’y~)= r(’y~~.)= r(’y~~-~J-y~)= 0 and i-(’y1-~2’y3’y4)= 1.

At thenext order Z~= 0. Then = C is generatedby cc = 1/(2iir)Sr with

w(a, b,c) = (_l)8b if abc = ±‘y1’y2y3’y4 and 0 in the othercases. Notice that if
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we set F1 = ‘y~,F2 = ‘72 and F1 = ‘73,f2 = ‘y~ then rj = l/2(F1 + iF2) and
= l/2(I’1 + iF2) generatethe GrassmanalgebraAC

2 . It is easyto checkthat

= O,cc(~,ii,?j)= 0,w()’,m~)= 0 if)’ E C,but ce(’i~,m~))7~0since
theproduct ~f~) containsatermof thekind ‘71 ‘72 ‘7~‘7~. Thiscould beusedasanother
wayof studyingthepropertiesof the Berezin integral.

5. CYCLIC COHOMOLOGY, PERIODICITY AND COBORDISM IN NON-
COMMUTATIVE GEOMETRY

5.1. The periodicity operator S

In the restof this paperwe usecohomologyratherthan homologybut it shouldbe
understoodthat thereis an analogoustheory at the dual level. Let A and B be two
algebra. Then, ingeneral ~ (A® B) ~ ~ (A) ® ~ (B) butwegeta naturalhomomor-

phism ir from the first into thesecondbecauseof theuniversalpropertyof ~ (A 0 B)
of Section2. Let cc e C~(A)and ~&� Cm(B) be two Hochshildcochain,they can
be thoughtof as linear forms ~ and ~ on Q(A) and ~ (B). Their cup product

(cc#~)isaHochshildcochain(of degreen+ m)definedby (cc#~)=(~®~)ir.
Theseformal considerationsgetsimplified if we take B = C (thecomplexnumbers)

and if wetakefor ~ the 2-cocycle T which generatesthe cyclic cohomology of the

algebra C (cf. Section4.6.1); we canchoose r( e,e,e)( = ~(e6e6e)) = 2 i~r. Re-
memberthat we call C~the Hochshild cochainsand C~the cyclic cochains. Then

r E C”~2(A 0 C) = C’~2(A) when A is a complexalgebra;we thereforeget
a map from C’~(A)into C’~2(A) . One canprovethat if cc and ~ are Hochshild

cocycles,then cc#~ is still a Hochshildcocycle. Actually, the map of interest,called
S (cf. [7]), is gotten by restrictingour attentionto the cyclic subcomplcxC~.Let

cc E C~(A),then Sw is definedas:

(28) Sw = A(~#r)
n+ 3

whereA is the cyclic symmetrizerintroducedineq.22.
FactsabouttheoperatorS (cf. [7]):
(i) S mapsC~into C~2; (in particular Scc is still cyclic).

(ii) If cc is a cyclic cocycle(i.e. cc E Z~,i.e. 5cc = 0 ) then 5w E Z~2and

Sw = r (thisexplainswhy we introducedthecoefficient I /( n+ 3) andtheoperator
A in the generaldefinition of 5): the imageunder S of a cyclic cocycleis a cyclic

cocycle.
(iii) If cc is a cyclic coboundary(i.e. cc E B~, i.e. cc = bi,b for ~ E Cr~) then

Sw is alsoa cyclic coboundary:Sw E ~ More precisely

(29) bS~&= for ~ E C~.
n+ 3
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(iv) Fromtheabovewe havethat S inducesamap(alsocalled S ) from thecyclic

cohomologygroupsH~—~ H~~2
(v) If we representcyclic cochainsas linear forms ~ on ~ (A) , we havethe

following explicit writing for S~:let w E £~,,(A),then

(S~)(w)= 2 ~(SAw)

whereA is definedin eq.22 and S is definedasfollows

S(a
05a1...~a,,.,.2)= a0a1a2c5a3.

(31) + ~2(a0~a1 . . . ~ . . . 6a~~)

5(a0) = S(a06a1)= 0

Thisis actuallyanalternativefor theabstractdefinitioneq28. If cc is acycliccocycle

(bce= 0 ), we mayremoveboth I /(n + 3) andtheoperatorA in theaboveformula.
(vi) We saw in (ii) that if cc E Zr then Sw ~ Z~’~

2butmoreoverwe canshow
that Scc is also a Hochshildcoboundary:Sw = b~(not acyclic coboundarysince ~
isusuallynotcyclic). Thispropertycanbecheckedby taking

(32) ~ = 2i~~(—1)~((a°~a1...6a’ )a1(~a1~~

TheoperatorS issometimescalledthe periodicityoperatoror thesuspensionoper-

ator.

5.2. Relationbetweentheoperators5, B and S •
The following resultscomefrom algebraicmanipulationsinvolving thedefinitions

of 5, B, B
0 and S; wereferto [7] for thedetailsandtheproofs.

(i) TheimageunderB of aHochshildcochainis alwayscyclic moreoverthemap
isonto (but notoneto one): BC” = CA”~

(ii) The imageunder B of a Hochshild cocycleis a cyclic cocycle (it is cyclic

becauseof (i) and a cocyclesince Bb = —SB).Moreoverit alsoliesin the imageof

B0 (the preciserelation is BZ” = B0 Z” fl Zr’ ).

Noticethat agivencyclic cocycle r cana priori be written r = Bw , where cc E C”
becauseof (i); howeverif r ~ B0Z” it cannotbe written as Bce with ~ E Z” C C”

becauseof (ii). If westart with a givencyclic cocycle T ~ Zr~, we maydistinguish
2 casesI) r E B0Z”, then,becauseof (ii) it canbe written as r = Bce for some

cc E Z”. Then w =
5w = 0 and definesthe samecohomologyclass (zero!) as



454 R.COQUERAUX

STE B~1c zr~.2) r~B
0Z”,thcn,becauseof(i)itcanbewrittenasT= Bce

for some wE C” (actuallyitcanalsobewrittenr= B0i,b for some ~ in C”). Then
w =

5w E B”~ c Z”~ and wehave2subcases.2a)Casewhere ~ isacycliccocycle:

w ~ Z~ (it hasno reasonto be a cyclic coboundarysince cc is not cyclic a priori).
h-i this caseonecanshow that w defines(up to a scalarfactor), thesamecohomology

classas ST; moreprecisely [SB cc] = 2 i~rn(n + 1) [bw] . Onecouldevenchoosean
elementceo in C” suchthat the identify holdsat thecocyclelevel. 2b) Casewhere w
isnotcyclic: w ~ Zr’ . Then, in anycasewE kerSflkerB (Sw = ~2w= 0 and
Bw = BSço= b~= 0 ) and,in this situation,it is possibleto <<correct>> it: onecan find

canonicaly~ in thesameHochshildcohomologyclassas w suchthat i is cyclic [7,11
p.12l]; then,again, [Sr] = 2iTn(n+ I)[~] in H~ . More precisely,oneproves

that kerS fl kerB = ZA + S(kerB) , thereforeone writes w = ~ + Si,b where ~,
determinedby the equation (1 — )‘)~= B

0w , belongsto KerB + Z” c C” then

Si,li E S(KerB) . This last remarkwill beusedin Section6.
Thefollowing diagrammayhelp to rememberthe aboverelations(in case2a).

Zr
1 w Sr

Zn

Zr—’

Thepreviousresultssuggestthat, atthe cohomologicallevel,onemay write

5:Hr~~ as ~5’=2iirn(n+l)5B1

This is indeedtrueand will be precisedin the following section.

5.3. The Connessequence

Since B mapsHochshildcochainsontocycliccochains,it also inducesamap at the
level of cohomologygroups: B maps H* into H~.Also, the operatorS maps H~
into H~(actually H~into H~2). Finally,acyclic cocycleisinparticulara Hochshild

cocycleand wehavethereforeamap I (inclusion)from H~into H~.It is temptingto
considerthetriangle

-~ H~

/
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The nicething is that this triangleis exact (the imageof anyof the threegroupsap-
pearingin this triangleunderthecorrespondingmapisthekernelof the followingmap),
in otherwords, we havean exact couple (for elementarypropertiesof exact couples,

cf. [22]). The simplicity of this resultrelatingHochshildto cyclic cohomologyshould
not makethe readerthink that the proof is simple: it is probablyoneof themostdif-

ficult technical points of the theory. The result encodessomeof the properties already
mentionedin 5.2; notice that it impliesthat SB = IS = BI = 0

Since H* = ~,,H” and H~= ~ , andif werememberthat S increasesn by
2 and B decreasesn by one,wemayrestatetheaboveresultby sayingthat wehavea
infinite exact sequence:

—~ H”-~Hr~-~-~H~’LH”~’~ .—~

Noticethat if n> (Hochshilddimensionof A —cf. 3.6.), H” = 0 , then, wehave:

0 —~ H~~’-~H~—‘ 0;

this showsthat H~’ and H~areisomorphic(periodicitymodulo2) under S.
The aboveresultjustifiesthe following definition: We define the periodic cyclic co-

homologyof thealgebraA (groupsdenotedby H~) asthe inductivelimit of thegroup
HA underthemaps S : H~~’—~ H~2. Thesegroupswere actually<<DeRhamcoho-

mology groups>>in [7], [8] but this terminologyis slightiy confusingand anyway, the

new terminology, aswell asthe notation H~ seemsto becomestandard.

Sincewehaveanexactcouple,it isclearthat lB : H* ~ H~is suchthat (lB)2 =

I( BI) B = 0 , thereforeonegetsin thiswaya derivedcouple

A
2 —~

/

E2

where A2 = S(Hr) and E2 = Ker (IB) /Irn( IB) : Onecanthenbuild a sequence
of derivedcouples(Ar, Er). The correspondingspectralsequence{E~}whosefirst

term is E2 canbe shownto be convergent. The readerunfamiliar with spectralse-
quencesshouldskipthenext subparagraphandjust rememberthe definitionof .62 and

thedefinitionof H1~~givenabove.
We alreadyintroducedmixed complexesin Section4.4, it is clearthat (C*, 5, B)

where C~denotesthe spaceof Hochshildcochainsis a mixed complex. We find a

doublecomplex associatedwith it as follows ([7]): Wedefine C”’
tm = C”m , then,if

cc e C”~” , weset

d
1cc(n—rn+1)bw, d2cc= Bce.

(n—rn)
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Onecanthenconsidertwo possiblefiltrations(andtwo spectralsequences);the initial
term E2 of thespectralsequenceassociatedto the first filtration is zero and doesnot

convergein generalbut thesecondfiltration is convergent(towardstheassociatedgraded
complex)and actuallycoincideswith the spectralsequenceassociatedwith the exact
couple.Thecohomologyof thedoublecomplexdependsonlyupontheparity of n one
finds Hn(C**, d, + d2) equalto H~” ( ff)~H~’)if n is evenor to

if n isodd.

5.4. Cyclesover an algebra and noncommutative cobordism

The ratherformal developmentsof the preceedingsectionsshould not cloud the

fact that a cyclic cocycle is, roughly speaking,a noncommutativegeneralizationof

thesymbol <<J~>>. Indeed,if M is an n-dimensionalmanifold without boundaryand
f0, f1,. . . f,~are (n+ I) functionson M (elementsof A = C( M) ), wemaycalculate

thenumber

fM f0 df~A df2 A ... A df,,-

Theoperatorf,~,appearsasacycliccocyclefor the M algebraA and,asdiscussed
in Sections4.1 and4.6.2, it appearsalso as a gradedtraceon the universaldifferential

algebra~ (A) vanishingon (5Q (A) (soa closedgradedtracefor (5). Ii finally appears

asa closedgradedtraceof thegradeddifferentialalgebraA ( M) = A P(M) of
differential forms on M (this is not a surprisesince ~2(A) is universal). This last

propertymotivatesthe following generalization.
A cycleof dimensionn overanassociativealgebraA is agradeddifferentialalgebra

A = ~0A~ with differential d alongwith a homomorphism A~A°and a closed
gradedtrace f from A” into C (the adjectiveclosedreferringhere to theproperty

fdw = 0 , Vw E A”
1). Withsuchadcfinition,itisclearthat(A(M),fM) isacycle

of dimensionn over A = C( M) when M is asmoothmanifoldwithoutboundaryof
dimensionn; moregenerally,in the casewhere M hasnon trivial homologyone can

constructothercycles.
Givenan n-dimensionalcycle, we shalldefine(asin [7]) its characterby thefollow-

ing (n+ 1 )-linearfunctionalon A:

(32) r(a°,... a”) = f cc(a°)dp(a’)...dp(a”).

It is almostclear(andanywaytrue)thatit isequivalentfor a ( n+ I )-linearfunctional

T on A to be
(i) a cyclic cocyle,

(ii) a closedgradedtraceon ~ (A)
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(iii) thecharacterof a cycle (A , f) overA. As weshallseelater, this last charac-
terizationof cyclic cocylesis one of the most <<operational>>sinceit allowsus to build
themexplicitly.

In our previousanalogywith <<commutativegeometry>>,weuseda manifoldwithout

boundarysincewewantedto write (usingStoke’stheorem)

fM = ‘3M = 0.

When OM ~ 0 , we should consider two differential algebras,namely A (M) and
A (OM) that we may call OA (M) . In the noncommutativesetup,on [7] is therefore

leadto the following definitions:
We first considera triple (A , OA , f) where A and OA are differential algebras

of dimensionsn and n — 1 [and f a non closedgradedtrace on A I; in order to
mimic what wehavein the commutativecase(a p-form on M definesalsoa possibly

vanishingp-form on OM), we assumethat we are given a subjectivemorphism r
A — OA , in thepresentcase,we cannotassumethat f dw vanisheswhen w E A”1
but we may imposethat fdw = 0 wheneverw E A”-’ is suchthat r(w) = 0.

Moreoverwe definea gradedtrace or OA by fw’ = f dw for any w E A”~
with r(w) ~rw’. Suchatriple(A,OA,f) alongwiththemorphismr wilibecalled
a chain;by theboundaryof sucha chainwe will meanthecycle (OA , f’).

Wearenow ready for thedefinitionof noncommutativecobordism.Twocycles A
1

A2 overthealgebra A (with homomorphismsPi’ P2 ) are cobordant if there exist a
chain A with boundary(A1 ~ A2, ~f2 ) and a homomorphismp: A —p A such
that r.p = (pi ,P2) . Onecouldcheckthat this is anequivalencerelation. It is not too
difficult toprovethat if i~, and i2 arethecharactersof two suchcobordantcyclesover

A,then -i1 ~ = B0ce where cc(a°,...,a”~)= fp(a°)dp(a
1)...dp(a”).There

is more: onecanproveusing5.2 (ii), the following theorem:two cyclesover A are
cobordantif and only if their characters~ and i2 aresuchthat T

1 — T2 = BiJ where

~ E H”~
1(A). The group M*(A) of noncommutativecobordismclassesover A is

thereforeequalto thevectorspaceHr/Im B. Anotherinterpretationofthis groupwill

begiven in thenextsection(~5.5).
Before endingthis section,let usmentionthat, later, we will allow n to be infinite

(infinite dimensionalcycles),thenyieldingfunctionalover ~ (A) — via theircharacter

— and relatedto entirecyclic cohomoogy(cf. Section7,9.7and 10.5).

5.5. Thecohomologyof DeRham.Karoubi •
Denotingas usualby (~A,(5) the universaldifferential envelopeof A, we may

noticethat thespace

[~IA,~IA]~ > [~pA~gA]
p+ q=”
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isstableunder6 andit istemptingto considerthecohomologyofthecomplex( A * ~ (5)
whereA “(~IA) c~~A/[QA, ~lA]~:thisis thecohomologyof <<DcRham-Karoubi>>
introducedin [6]. It is sometimescallednoncommutativeDc Rhamcohomologybut

this nameshouldbe avoidedbecausetoo manydifferent cohomologiesdefinedin the
contextof associativealgebrascoincidewith the usualDc Rhamcohomologyin the

particularcasewhere A = C(X)). At the dual level, one candefinethe homologyof
Dc Rham-Karoubias the homologyof thecomplex A~~)A of (graded)traceson ~ A
underthe operator6~— thetransposedof 6 —. It is shown in [7] — seealso [II] — that

thehomologyof this complexcoincideswith thegroup M*(A) of cobordismclasses
overA introducedin theprevioussection.

5.6. When A is abelian: the complexof Kãhler-De Rham $
When A is anabelianalgebra,it is standardto considerthe following complex(we

discussit herejust to show that its definition requirescommutativityand to warn the
readerwho could comeacrossthis complexthat it comesfrom adifferentconstruction).

Let us call ~A = A ‘(GA) = ~1A/[A, ~1A] ; noticethat cILjA is a A-module,

then I~kAis definedasthe exteriordifferential algebraof QA (onemay introduce
an interior productas usual). The cohomologyof ~ 8) , when A is abelianis

the cohomologyof Kähler-DeRham. Notice, that, by universalityof ~ A, wehave
a surjection~A —~ QkA (which vanisheson [QA,~A]) we thereforeget also a

surjectionfrom AQ(A) onto QkA which is actuallyan isomorphismindegree0 and
1. It is anisomorphismin degree~ 2 if andonly if [�~ A, L~A] is abilateral idealof

~A [11].

6. POSITIVE COCYCLES*

Wealreadymentionedin4.3that tracesonthe CuntzalgebraQA leadto cycliccocy-
cle: if cc E Z~,n even,then thereexistatrace T on QA suchthat cc(a

0,... , a’s) =

T(qa0 .. . qa”) . More generallywe couldconsidermultilinearmaps w definedby

~ ,a”) = T(a°qa’...qci”)

A carefulstudywould revealthat suchmaps w aresuchthat Sw = 0 , arenotcyclic

in generalbut are such that B
0w is invariantunderthe actionof the cyclic group. In

the casewhere A has a * operation(samething for QA), it is natural to studypos-
itive traces T on QA i.e. T(w*w) � 0 Vw) : they will correspondto some spe-

cial (noncyclic)cocyclesthat havebeenchristened<<positive cocycles>>[23]. From the
physicalpoint of view, it is natural to be particularly interestedin positivefunction-
als (bearing in mind the probabilistic interpretationof quantummechanics).From the
mathematicalpointof view, if T is a positive trace,onecanthen build a scalarproduct
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(cw, /3) = T(c~8*)and get anHilbertianalgebra,in which caseoneobtainsmanynice
properties(in particularonecanfind a representationvia the GNS construction). The
corresponding<<positivecocycles>>on A havethefollowingproperties(thiscanbeused
asa definition): let n be anevenintegerand w an(n+ 1) linear form over A , then

w is apositivecocycleif
(i) Sw0,
(ii). (l+)~)B0w=0,

(iii) thefollowing scalarproducton A®~’, p = n/2 is positive: (a°® ...

a
9,b°0 . ..® 59) = w(S°cz°, a1,...,a9,br,... 5I*)~ When n is odd this definition

hasto begeneralized.Suchapositivecocycle w is aHochshildcocycleby (i) butisnot

cyclic in general,however,it is possibleto find a cyclic cocycle ~ of thesameorder
(butno longerpositive)in thesameHochshildcohomologyclass.Indeed (1 +)~)B

0w =

0 =~‘AB0w= 0 =~ Bw=0 therefore wE Kerbfl Ker B andwecanusethe
method introducedin 5.2 2b): in thepresentcaseit is enoughto choose~ = ~- B0w

(then (1 — )~)~ = B0w asit should); in other words, if w is a positive cocycle,then
= w — ~ B0w is cyclic. Letus give two examples.
I) Let ~ bea Riemanniansurfaceand f

0 f1 f2 threefunctionson ~ . Thenthe

functionalw(f°,~ I = ~ f f°Of’~f2 is a positivecocycle(in thecase f°� 0
and f1 = /2 ,onegets w(f°,f’,f2) > 0); of coursewedenote Of = dza~fand

= d~O~f.Let us define df = (0 + Ô)f, thenthe functional ~(f°,f1,f2) =

J~f°df’ A df2 is a cyclic cocycle(but is notpositive).

2) Let M bean evendimensionalorientedRiemannianmanifold then
(33) ~ ,f~)= fM (I y5) t~f’. ~f2 . ... .

(where p is the volumeelement, ~f = ~-,PO~,fin theClifford algebraand ‘y~ is the
helicity operator)is apositivecocyclewhereas~ = T — ~ SB

0T

(34) ~(tP...fn)=ff~dfIAdf2AAdf

is a cyclic cocycle.

Beforeendingthisparagraphit is interestingandnot toodifficult to seehow onecan
getawholeascendinghierarchyof cocyclesfrom thedataof a cycliccocycle ~ of low

dimensionality(for instanceii~E Z~). We first choosecc5 suchthat B0cc5 = w4 and
suchthat w6 =

5cc5 is apositive(even)cocycle,we thenbuild thecorrespondingcyclic
cocycle i~

6 and we iteratethe construction. In this way we build a sequence of cyclic
cocycles(~w6 ...) as well as a sequence( ce5 , bce5 , cci,

5wi~ ~•) corresponding

to thelinearfunctionals

~p
9(a°,...,a~) =T(a°qa’...qa

9) (pbeingodd).

5cc
9(a°,... ,a~)= T(a°qa’...qa~’)
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and T being a traceon QA. In orderto build positiveodd cocycles,oneshoulduse
traceson thealgebra�(A)

7. ENTIRE CYCLIC COHOMOLOGY

We alreadymentionedin 4.3that evencyclic cohomologycould be reconstructed
from thestudyof odd traceson QA i.e., vanishingon the evenpart (andodd cyclic

cohomologyfrom odd traceson cA) but we did not reallyuse this fact. Also, cyclic

cohomology groups aregradedby intergers:a givencycliccocyclecanbeconsideredas
an n-linearform but n is fixed andwe did notconstructanycocyclethatwould appear

sometimesasa p-form and sometimesas a q-fomi. However,atraceon QA (or �A)
is anobjectthat canbe consideredas a form of anydegreep when it is restrictedto the
domainspannedbyx0q(x1).. .q(x9) and q(z,) . . .q(x9) . Onewouldliketodeflnca

cohomologytheoryin sucha waythat cocyclesappearassequences(cc9)99N where cc9
is a (p+ 1 )-linearform on thealgebraA. Sucha cohomologywould notbe Z-graded
butonly Z2 -graded.All this motivatesthedefinitionof entirecycliccohomology[25].

7.1. Functionalsof arbitraryorderandtraceson QA and �A

At thepurelyalgebraiclevelone canestablisha canonicaloneto onecorrespondence

betweenthe following threenotionson algebraA.
(i) cocyleswith infinite supportin the(5,B ) bicomplex(discussedin Section5.3)

which arcnormalized.
(ii) linearfunctionals cc on the universaldifferentialalgebra ~ A suchthat

(35) cc(wiw2 — (_l)

8182w

2w1) = ~- (—l)
3’cc(dwidw

2)

(iii) Odd traceson theCuntzalgebra QA or on Zekri algebracA.

Severalcommentsarc in order:(i) the <<infinite support>>requirementmeansthat we
actuallyget functionalsof arbitrary order. Calling C” the spaceof continuousn +

1-linear forms ~ on A, we define CCV and CO(Id as follows CCV = {(~2~)~N

~2n E C
2” Yn E N}, COdd = {(~2n+1)neN’ ~2n+I E C2”~ Vn E N). The

boundaryoperatorS + B maps ~ to C°~and C0~to ~ The normalization

conditionisthefollowing: a cocycle(q5~),,

9N isnormalizediff, for any m thecochain

B0cb~is cyclic, i.e. iff B,-~~ = ~ AB0cb,~.The reasonfor imposingthis condition
is that only normalizedcocycleshavea naturalinterpretationin termsof QA, QA or

�A.Fortunately,foreverycocycleonecanfind a normalizedcohomologouscocycle,so
thisis nota restriction. (ii) Rememberthat cycliccocyclesaregradedtraces(theyvanish

on elementsof theform w1w2 — (—1) ~

82w

2w1) , thereforethe right-handside of (iii)
comesfrom the factthat cc is not <<homogeneous>>but has a supportin all dimensions.
In [20], [27], the theoryis extendedto Z2 -graded algebras,it is thereinproposedto
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call para-bracketsthe kind of elementsof QA on which cc vanishes(cc becomesa

<<paratrace>>).(iii) Thecohomologydefinedin (i) is not Z-graded butonly Z2-graded

(thiscomesfrom thefactthat S+ B is nothomogeneous),thepreciserelationwith QA
and cA is the following: odd cocycles cc aregivenby oddtraces T on QA andeven

cocyclescc are given by odd tracesor cA. The relationbetween(ii) and (iii) should
notbetoo surprisingif werememberthe relation (8) of Section2.8.

7.2. Entirecyclic cohomologyof A O

It canbe provedthat thecohomologydefinedby (1) of 7.1 is trivial! However,pro-
vided we control the growth of Ijq

5~II in a cochain (~2p)or (‘~2p+1)we get some-
thingnon trivial in generalandusefulin orderto analyseinfinite-dimensionalspaces(or
cycles)such asthosethatoneis confrontedwith in QuantumFieldTheory. Here we

supposethat A is a Banachalgebra(to be ableto define, for any m and cc E Cm,
thenorm Ice~II = sup{ Icem(a0,... , atm)I; I Ia’ II < 1 }. Wearenow ready for thefol-
lowing definition: a cochainof the (5,B )-mixedcomplexis calledentireif the radius

of convergenceof thecorrespondingentireseriesis infinity. Onegetsa complexentire

series~II4>2~II~iforanevencochain(~2p) ,anda series~II4’2~+1II~iinthecaseof
anodd cochain (~2p+1). Entirecohomologyisdefinedforentirecochainsin 7.1. The
correspondingcohomologygroupsarenoted HV~ and H~ . Theboundaryoperator

on C9 is definedas 0 = (p + 1)b + B. Onecancheckthat if qS is aneven(orodd)
entirecochain,thensois OcS whichmakesthenotionof entirecohomologymeaningful.
Notice that an entirecochain ~ (not necessarilya cocycle)definesan entirefunction

on thealgebraA : F,b(x) = ~
0(—l)’~

T~
2~(x,x,...,x)/n!, zE A. Onecanbe

temptedof interpretingthemultilinearforms ~ assomekind of N-point functions
in a QuantumFieldTheory.Entirecocycleswerealsointroducedin [29], [30] in a quite

differentcontextandhavebeenparticularlystudiedin thecaseof two-dimensionalsu-
persymmetricWessZuminomodels(onespace,onetime). An explicit expressionforan

entirecocycleis alsogiven there(cf. also [28]).Wewill returnto this in section10.6.
We alreadymentionedin Section5.4 that onecanconsiderinfinite-dimensionalcy-

cles A = ®p=0°°A~over an algebra A (with ahomomorphismA~—, A°). This is

expectedwhenA is <<big>> (like in QuantumFieldTheory).Thenafunctional p (gen-
eralizing f) overthedifferential algebra(A , d) satisfying (ii) of 7.1 i.e., ~(~ 1 ~2 —

(_l)0182)¼2)~1)= f (—l)
3’p(d)¼

1d)~2),with )~EA shouldgiveusentirecocycles,

via its character,as in 5.4. We will returnto thisproblemin Section10.6.

8. THE LODAY QUILLEN COHOMOLOGY OF THE LIE ALGEBRA OF MA-
TRICES O

Thereis anotherapproachto cyclic cohomology. Thisapproachwas followed by

[30], independentlyfrom [7]. Wehavenot followed this lastpointof view herebutwe
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will indicatewhatthe relationbetweenbothconstructionsis.
Let A beanassociativealgebraand M~(A) = M~® A the algebraof matrices

with coefficientsin A; it is alsoa Lie algebrafor thecommutator[I.

Onecanbuild the universaldifferentialalgebra ~l ( M~(A)). Thereis a map ~r

—~ ~(A) definedon monomialsby

(36) ir(m0 0a0tS(m1®a1)6(m2®a2) ...(5(m,,Oa~))=
=Tr(m0m1...m~)a05a,...6a~.

If T is acyclic cochainon A , onecanbuild a cyclic cochain Tr# T on M~(A) as

follows:

(Tr# T)(m0®a0,...,m~®a~)=

(37)

Onecancheck,usingthe cyclicity of the traceTr, that Tr # T is indeedcyclic.

The abovecyclic cochainTr # T is cyclicly antisymmetric(by construction)but is
not fully antisymmetric.We want to build a fully antisymmetricform q~(T); wejust

needtoantisymmetrizeTr#T: qS(’r) Ant(Tr # T) . Then ~(T) isanantisymmetric

form on theLie algebra(M~(A),[])

Oneknows to definein generalthe coboundaryoperator8 on antisymmetricforms
on a Lie algebra: 6~.

The theorem of Loday Quillen establishesa relation betweencyclic cohomology
(ST = 0) and the Lie algebra cohomology of M~(A) (6(~(T))= 0). Onefinds

in general

(38) 4(bT) = 6~(T).

It wasimportant,in thepreviousconstruction,of choosingT, cyclic and of antisym-
metrizingTr # T ratherthan i- alonesinceTr(m0 .. . me,) is not antisymmetric.One

could try to startwith a Hochshildcochaina, ratherthan with a cyclic cochainbut in
this caseonewould notgetan equalitybetween j( ba) and 8~(a)

Thepreviousrelation involving b and 6 doesnot leadactually to an isomorphism

betweencyclic cohomologyand the full Lie algebracohomologyof M~(A) butonly
with the <<primitive>>partof it. Thisnotionissomehoweasiertodefineat thehomological
level. Let £ be a Lie algebra,then onecanconsiderthe homologyof the complex

(E~(£), d) where E~(£) = A “L is the n-th exteriorpowerof £ and where d is

definedas

d(x1A...Az~)=

= ~ ~
I<~~f<n
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In thecasewhere£ isthealgebraof infinitematriceswhichhaveonlyafinite number

of nonzeroentriesin thealgebraA. We write this complexas (E~(M( A)) , d). We
call then = E,~,,0 a~thematrix which has a~,asthe only nonzeroentryon the
(~, ii ) position; for aA ~ 0 . Thesubspaceof( E~(M(A), d) spannedby all elements

E~~2A E~~3A . . . A E~,is noted (PE~(M( A) ). Thisdefinesactuallyasubcomplex

(PE~(M( A)) , d)calledthesubcomplexof primitiveelements(thefactthatit is indeed
a subcomplexis the importantobservation).Wecall Prim(H~(M( A)) ) thehomology

of this subcomplexandonecanprovethat it is isomorphicwith thecyclic homologyof
A.

To illustrate the above,we will consider the following example. Let r be the 1-

cycliccocycledefinedby r(a,S) = ~ Tr(a[F,S]) wherea,b E A = C(S
1) and F

is thephaseof theDirac operatoron thecircle actingon £2 (S’) as follows Dx(9) =

—i~z(O). Actually F is properlydefinedas lim~....
0phase(D + c)~>~since D

has a zero mode(the constantfunction). Notice that F is diagonal(with eigenvalues
+1 or—i) on thebase {e~1O}.Fora generalmanifold of dimensionn, onewould find

[F, 5] E £“~~, fore > 0 ,but in thespecialcaseof thecircle [35],onecantake c = 0

sothat [F, 5] E £I . Theabovecyclic cocycleis thereforewell definedandthe general

theory(as well asan explicit calculation)showsthat it is equalto ~ ~ adS. If we
replacethealgebraA by thealgebraM~(A)of nx n matricesoverA and r(.,.) by
w~(.,.),with [w~(a®(e21) S®(e~))= r(a.S) Trace((e11)(ekl))] onecancheck
(using bT=0)that [w([x,y],z)—w([z,z],y)+w([y,zl,x)0] sothatw isa
Lie algebracocycleanddefinesacentralextensionoftheLie algebraM~(A) whenwe
defineancwbrackett[.,.]‘ as [u,v]’ = [u,v]+w(u,v)c,thenewgenerator, c,being
in thecenterof theextension.This is, ina sense,thesimplestkindof <<Schwinger>>term.
Elementsof M~(A) canbe consideredas loopsin M~(C)so that theabovecyclic

cocycleis alsoresponsiblefor the centralextensionof ioop algebrasandofloopgroups
[37].

9. THE NONCOMMUTATIVE ANALOGUES OF VECTOR BUNDLES

9.1. From vector bundlesto projective modulesof finite type

In usual (commutative)geometry,one introducesthenotionof vectorbundles.This
notion is of fundamental importancein physics,namelyin classicalfield theorysince

the<<classical>>matterfields are almostalwaysdescribedas sectionsof vectorbundles.
In thenoncommutativeframework,wehaveto generalizethisnotion. Actually,wehave

alreadygiventhe clue: the importantobjectsarenot thevectorbundlesthemselvesbut
thespaceof their sections.From the algebraicpoint of vue, thespaceof sectionsof a
vectorbundle is a moduleover the (commutative)algebraof functionson the baseof
thevectorbundle. By removingthe adjective<<commutative>>,weare led to the idea
of replacingthevectorbundlesby modulesoveran algebra A. Actually, thespaceof
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sectionsof avectorbundle isnot anarbitrarymodule:it is aprojectivemoduleof finite
type(thesepropertieswill be recalledbelow)and this will indeedbetheright notionto

generalize.

9.2. Modulesover an algebra A (We assumethat A is unital)

As it iswell-known,amoduleover A is like avectorspacewith thedifferencethat A
is analgebra(actuallya ring) andnotafield. Onecanthink of a complexmodule E asa

complexvectorspaceendowedwith a representationof thealgebra A. Actually,when
A isnotabelian,onehastodistinguishbetweenleft andright A modules.Fornotational
reasons,it is convenientto useright modules.As for vectorspaces,one introducesthe
dual E* of E as E = HomA(E,A) ; noticewe canidentify E with Horn A(A,E)

and A with EndA(A) . This justifies the useof dyadic formalism (bra-ketnotation)

in this case: if I~)E E and (cc~E E* then I~)(ccl E EndA(E) and (ccI~)E
EndA(A) = A. The right actionof A on E canbe written j~)a= I~a).

Notice that A” = ~=I A is a unital A-bimodule. Indeed z{a’,... , a”)y =

{xa’y,... ,xa”y}

E iscalleda freemoduleif it is isomorphicto A” . In thiscase,onecanfind a basis

i.e., a minimal generatingfamily as well as a dualbasis (e’l with theproperties
(e~I e1) = 6~and Ie~)(e~j= I (usingEinstein’sconvention). A freemodulebehaves
asa vectorspace,n is calledthedimensionof E. Notice that the spaceof sectionsof

a trivial vectorbundleover M is a free moduleover C( M)

E is a moduleof finite type wheneverthereexists a morphism(projection) 7T

A” —* E. In this case,one canagainfind a base {lvj}. This baseis the imageof the
base let) = {0 ,0,..., 1, ... , 0) in A” underthe morphism(projection) ir . In other

words, E is of finite type if it canbe finitely generated(this, of course,doesnot imply
that it is free!).

E is a projectivemoduleof finite type if I) it is of finite type (hencewe havea basis
Jv1) = irIe~)) and 2) it is projective,in the sensethat thereexistsa lift )~: E —* A”

suchthat ir)~=
1E~ This lastproperty allowsus to build a dual basis (v’I; we will

have lv’) (v,l = I , as in the freecase,but (v’ I v,) ~ 6~. Indeed,we build the dual

basis (v’I = )~(e’jwhere )~: (Afl)* —i E~is the transposeof .\. The closurerelation

Iv’) (v~l= 1 is anotherwayof writing ir)~= I and thepseudo-orthogonalityrelation
reads (v’ I v,) = E A (p~~‘ 6~ in general),where p~’, arethecomponentsof thc

projectorp = .\ir of the freemodule A” (p is indeeda projectorsince pp )~7r)~7T=

= p). Notice that p = ~ir E EndAA” allows us to decomposeA” asfollows

A” = pA” + (1 — p)A”

E
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ir (and)~) are isomorphismsbetweenE and pA” (it isclear that E isindeeda right
module). Since EndA( A”) = M~(A)= M~® A, wecanrepresentp asa n x n
matrix with elementsin A. We could alsocaracterisesucha finite projectivemodule

E by writing that it hasto be adirectsummandof a freemodule;this meansthat (up to
isomorphism)wecanwrite A” as A” = E ~ F. It canbe shownthat, in thiscase F
is also of finite type (but not necessarily free).

It canbeshownthat thespaceof sectionsofavectorbundleaboveamanifold M is

alwaysaprojectivemoduleof finite typeoverthecommutativealgebraA = C( M) of
functionson M.

In thenoncommutativeframework,thenotionof vectorbundles(orbetterthenotion

of spaceof sectionsof a vectorbundle)is replacedby the notionof projectivemodules

of finite type overanalgebraA , orequivalently,by projectorsin thealgebra M~(A).

9.3. K-theory of algebras A O
In differential geometry,one first definesthenotionofvectorbundlesovera manifold

X , and noticesthat the spaceof equivalenceclassesof vectorbundles(underisomor-
phism)is an abelianmonoid, onecandefinethesumof two vectorbundlesandthis

operationis associative.Oneis thereforetemptedto constructa group by considering
<<negative>>elements(exactlyaswhenwe constructthe integersoutof thepositiveinte-

gers).A technicalcomplicationis that,in thepresentcase,themonoidis notsimplifiable
(a+ c = b + c doesnot imply a = 5). There is neverthelessa simplewayto getaround
this problem; following Grothendieck,onedefinesthe abeliangroup K°(X) as the
spaceof equivalenceclasses(a,5),where (a, 5) -‘~ (a’, b’) if andonly if there exist c

suchthata+ S’4- c= a’+ S+ c,(morally a — b= a’ — 5’), a,S,a’,S’,cbeingthem-
selvesclassesof isomorphismof vectorbundles.Usualvectorbundlescanbewritten as
(a,0) = +a and<~~virtuaI>>vectorbundlesas (0,a) = —a. Theshortestwayofdefining
the group K’(X) is to defineit as the K° group of its suspensionSX . The suspen-
sionof a spaceX is exactlywhat our intuition suggests(for instancethesuspensionof
a circle is a two-sphereand moregenerally 8S9= SS~).Onecould be tempted of
continuingthis way and defining K2(X) = K’(SX) = K°(SSX)but it turnsOut
that K°(X) = K°(S2X)—Bottpcriodicity—: a spacehas thesame K-theory as its

doublesuspension[31] [32]. So, topological K-theory stopsthereand wehaveonly
to considerK°(X) and K1(X) . Actually,we considerhereonly complexvector
bundles,indeedtheperiodicity is not two buteight in the realcase.Thereadercertainly
knowsthat,evenin the realmof <<commutative>>geometry,onecandefinehigher<<alge-

braic K-theory groups>>or <<Quillen groups>>: their noncommutativecounterpartalso
existsbut wewill notdiscussthemhere.

In noncommutativegeometryonefollows thesameconstructionand,becauseof the
resultsof sect.9.2, definesthe K-theory groups K

0 (A) , for aunitalalgebraA, asthe

abeliangroupassociatedto the isomorphismclassesof finite projectivemodulesover
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A. Equivalently,it is alsotheabeliangroup associatedto equivalenceclassesof idem-
potentse (projectors in Mk(A)). Again, the group K1 (A) is definedas K0 (SA)
wherethe suspensionof an algebra A is definedas follows (by <<dualizing>>thecor-

respondingdefinitionsfor spaces): SA is the subalgebraof the algebraof continuous
functionson [0,1],valueof in A suchthatf(0) = f(1) = 0. Thereis actuallyadirect

algebraicdefinition of K1(A) which is less intuitive: it is the quotentof GL~,(A)
by its commutatorsubgroup.Theimportantobservationmakinglink with commutative

geometryis that,in the casewhere A = C(X) ,onegets K.(A) = K’(X), i = 0,1

(Serre-Swann’stheorem).

9.4. Connectionson finite projective modules

As in (commutative)differentialgeometry,it is usefulto introduceconnections(and

their curvatures).The basicingredientsare the following: A an associativealgebra,
E, a right finite projectivemoduleover A and A = (B9.0A

9 a gradeddifferential
algebra,with A° = A — or at least a homomorphismA —~~‘ A° as in 5.4, then A
is a A-bimodule —. In the commutative case,A would be C(X) , E would be the

spaceof sectionsof a vectorbundleover X and A thealgebraof differential forms.
We will now define a notion generalizing the notion of <<exterior differential acting on
p-formsvaluedin avectorbundle>>— Actually, in mostcases,it is evenmoreconvenient

to assumethat A is a cycle over A, asdefined in Sect. 5.4, which means that wehave
also atracef : A” —+ C suchthatf dw = 0 for wE ~ . One firstconsidersthe

space EA = ~ E~with E~= E ®A A
9. Notice that elementsof E~shouldbe

consideredas <<p-forms valuedin E >>; noticealsothat E~is still a right A-module.
A A -connection V on E — one may call it a covariantdifferential —, is a map from

EX = E into El suchthat

(40) V(Xf) = (VX)f + X 0 df where X E E and f ~A.

Notice that V is C-linear butnot A-linear. Thecovariantexteriordifferential on

E is the gradedderivationof EA which extendsV. i.e., one imposesthe (graded)

Leibnitzrule

(41) V(XOX)=(VX)).t-(—1)
9X®d)~ with XEE~,~EA.

In orderto introducecovariantderivatives<<in a givendirection,>>oneneedsa kindof
dual I, of A’ (overthealgebraA), indeed,if x ~ E and ~EL then VX E EOAA’

and we define

(42) V~X= (VX,~)E E.

A particularly important caseoccurswhen one starts with E, A and a Lie algebra
L actingby derivationson A, sothat L C DerA. In the casewhere A hasenough
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derivations,it canbe usefull to considerthespaceC( DerA,A) of cochainsof DerA
valuedin A. Thisspacehasnaturallya structureof gradeddifferentialalgebraandone
candefineconnectionsby chosing A equalto C(DerA,A) . Thisspaceis however

ratherbig (even in the classicalcasewhere A is C( M) , it containshighly non local
objects)and it canbe interestingto considerthe smallestsubalgebraof it thatcontains
A; let us call it ~ A). Thisnew algebrais anotherpossiblegeneralizationof usual

differential forms;onecandefine connectionsby chosing A equal to ~D(A). This
methodis describedin [47]. Notice that in this last case,onecanintroducecovariant

derivativesin thedirectionof aderivationof A. Onecanalsodistinguishthe following

cases:
(i) A = C(X) and L is the Lie algebraof vectorfields on X. This is thecase

of differentialgeometry(and<<linearconnections>>dealwith thecasewhere E itself is

sometensorialpowerof the tangentbundle TX or of the cotangentbundleTSX.

(ii) (A, C, a) is a dynamicalsystem, i.e. C is a Lie group acting in the algebra

A by endomorphisms(k E C, f E A, ak(f) E A). Then LieC actsalso on A by

derivations:to each~ E Lie G, oneassociatesa derivationof A noted d~.Onethen
chooseagain L = Lie C andbuild A astheexterioralgebraover Lt. Oneobtainsin
particularV~(xf) = (Vt)! + Xdef. Thestudyof connectionson dynamicalsystems

canbefoundin [34]. ThecasewhereA isagradedcommutativealgebraand L agraded
Lie algebraof gradedderivationis investigatedin [17]. Let usreturnto thegeneralcase
anddefinethecurvatureoperatorof the connectionV as V2. V is not linear,butwe
caneasilycheckthat, exactlyas in the caseof vectorbundles,V2 is aendomorphism

of EA ;i.e., V2 isalinearoperator:V2(X)~)= V2(X))¼,xE EA,)¼EA

Since(~(A), 6) is a universalobject,it is enoughto considergeneralizeddifferen-
tial forms (elementsof ~ (A)) valuedin a right A-module E. E is, in thepresent

cases,isomorphic to pA”, this suggeststhat we should study thecase E = A and
A = ~ (A). Here wesupposethat A is unital, call 1 its unit and assumethat 61 = 0

in Q(A) . Thismeansthat A shouldbedenotedA to agreewith thenotationsof §2.

Let V be a ~l-connectionon A. Take 1 E A , thenwe call w = V 1 E ~ ‘(A) , the

connectiononeform. Take f E A ,then,writing Vf = V(fl) = (Vf)l+f®61 = Vf
doesnotbring anythingnew. However,we canwrite Vf = V( If) = (Vl) 6+ 1 ®
which showsthat

(43) Vf=6f+wfEQ’

ThecurvatureE) isdefinedas

(44) B=Vw=V21

Thereforee = V(lw) = (Vl)w + 16w sothat

(45) 86w+w2
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In thecaseof the commutativealgebraA = C~(X) , an ~2-connection is defined

by anelement

w = ~ a~t5S~

of ~ 1 , sothat it canbe representedas a functionof two variables

w(x,y) = >a~(z)(b
1(y)— S~(x)).

Let us call <<Cl >>, the <<classical>>universalmapfrom ~I(A) to A ( X) . Then

Cl(w) = >a~db1

Cl(w)(x) = ~

In the casewhere X is a Riemannianmanifold, let us call ir theuniversalmap
factorizing the derivation ti from A to the Clifford algebraof the tangentbundle.

Then

ir(w) =

Noticethat thereare manymore ~)-connectionsthan<<classical> connections.For

instancetheelement

w = f6f — ~6(f2) = Ow(z,y)/~Z~

is not zero in ~(A) but Cl(w) and ir(w) are bothzero. Moreover 8w = 6f6f E
~

2(A) is notzero either, butalthough C1(6w) = 0 in A (X) , weseethat ir( 6w) =

df df=IIdfII2~’0inCliff(TX).
Let us compute0 , ir( 0) and Cl( 0) in this case. In orderto usestandardnota-

tions,wecall A = Cl(w) and A = ~ = ir(w) . Notice first that ir(w2) = A 4 =

A~AP= A2 . Then

ir(6w) = ~ = ~ — a~0~a~b~)}

It is convenientto introducethesymmetrictensor

= ~ a
2O~O~b1
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Then

ir(dw) = y~y”O~(A~)—

Ontheotherhand,calling

F = Cl(0) = Cl(6w) = dA, and F~,,= ô,~A,,—

theclassicalcurvatureof A, wemay write

= ~ +

sothat

im(8) = ~F~,1yM~i”+ ~ — ~ + AMA~

But By,, is symmetricsothat wemaycall S thescalar

~ —

—‘l’Y ~ ~

The final result is

(46) ir(8) =

1F ~y!~yV + (8~’A~+ AMA,~— 5).

This showsclearly that thereis <<more>> in the connection a than in its classical
counterpartA. At this point, the readercould be temptedto considerthe expression
Tr ir(82) in the Clifford algebra. Notice that 02 itself is anelementof ~4(A) . A

straightforwardcalculationleadsto

(47) ~ ~-(ôA+A2_S)2.

The physicistrecognisesthe Maxwell Lagrangianfor electrodynamic(the field S

doesnotpropogate:it canbe eliminatedby using its equationof motion = 0 sothat

5 = 8.A — A2).
Fromthe conceptualpointof yew, what we justdid was to use the universalmap

Cliff (TX) factorizingthederivation d: A—* Cliff(TX) andto use
thetracein theClifford algebra.Noticethat weusedthe traceandnot the<<supertrace>>

Str (a) = ii (‘y~x) ; this would haveleadto the topologicalinvariant FPUFM~rather
thanto the Maxwell lagrangian.
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We will indicate in Sect. 12 how to couple this <<electromagnetic>>connectionto
<<spinors>>in theframeworkof noncommutativegeometry.

Wewill notcontinuefurtherthe studyof theseA -connections;the interestedreader
is referredto [7]. A relationbetweenthesenon classicalconnectionsand the geomet-
ric structureof canonicalcommutationrelationshasbeenstudiedin [45],[46]. Before

endingthis paragraph,we shouldmentionthat if A = is a cycle over A, with
n = 2 m , even,then f

0m is independentof thechoiceof theconnectionV ; therefore,

as in thecaseof differential geometry,oneis temptedto consider

I fçOyn

m! I “2iir~

as a characteristicnumberof thealgebra A, obtainedfrom the pairingof a finite pro-

jectivemodule E anda cycle A . This will bedonein the following. Wewill returnto
someaspectsof connectionsin Sect.12.

9.5. Thepairingbetweenevencyclic cohomologyand K0(A)

Weknow, from sect.9.3 that a given finite projectivemodule E determinesa well
definedelement[e ] in K0 (A) ; we alsoknow that [ e I canberepresentedasaprojector

e in the spaceMk(A) of k x k matriceswith elementsin A. Besides,weknow that
if [cc]E H~~(A)is representedby a cyclic cocyle cc of order 2 m on A, we may
replaceboth A and cc by Mk(A) and cc# Tr (Morita invariance).The last remark

of 9.4 suggeststhat weshouldconsiderthepairing
(48) ([e],[cc])= 1 m~(cc# Tr)(e,e,...,e)

(2,ir) m.

Onecanprove[7] that thisindeeddefinesa pairingbetweenK0(A) and ~eve (A) i.e.,

thenumberon theleft handsidedoesnotdependon thechoiceof e in [e ] andof cc in

[cc].Moreover,oneprovesthat

(49) ([e],[cc]) = ([e],[Scc])

whereS istheperiodicityoperator(cf. sect.5), andthat,if cc is a cycliccocycledefined

asthecharacterof a cycle A over A (sect.5.4) then,oneobtains

(50) ([e],[cc])

Where0 is thecurvatureof any A -connectionon the moduleassociatedwith e,

as describedin sect.9.4. Notice that (eq. 49) showsthat K0 (A) actuallypairs with
periodiccyclic cohomologyasdefinedin sect.5.3. The readershouldnotbe surprised
thatonly theevenpartof H~(A) pairs with K0(A) — this canbeseenin the previous

formulasince 0 is anevendimensionalobject— Theodd partplaysan importantrole:
it pairs with K1 (A)
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9.6. The pairing betweenodd cyclic cohomologyand K1(A) •
Wementionedin 9.3 that K1 (A) couldbedefinedasthequotientof GL~,(A) by its

commutatorsubgroup.Wewill givethe formulaestablishingtheabovementionedpair-

ing[7]. Let u ECLk(A) bearepresentativeof[u] E K1(A) and ~oEZ~m_l(A)
a representativeof [cc]. Thenonedefines

(51) ([u],[cc]) (2i~)m2
2n+1(m—f)...f

.(cc#Tr)(u1 — 1,u—l,u’ — l,...,u— 1).

Onecanprovethat this is indeedindependentof thechoiceof the representatives
within theirequivalenceclassandthat

(52) ([u],[cc])= ([u],[Sço]).

Notice that u canbeconsideredas a finite projectivemodulefor thesuspensionof

thealgebraA (this amountsto addanother<dimension>>to theproblem— that physicists
couldbetemptedof calling <<time>> —).

9.7. The pairing between K
0 (A) and entire evencyclic cohomology•

In thesameway, oneexpectsa pairingbetweenK0 (A) and ffVe~ Indeed,if cc is

anentirecocycle,we canassociatewith it an entirefunction F~,on A (cf. sect.7.2).
If e is a projectorin A characterisinga finite projectivemodule,wemay considerthe
pairing

(53) ([e],[co])= F,~(e)

betweenK0(A) and HV~(A); asexpected,onecanindeedprovethattheresultis in-

dependentof thechoiceof e and cc within theirrespectiveequivalenceclasses.More-

over, we know (from sect. 7.1) that thereis anequivalencebetweenentirecocycles cc
and odd traces r on theZekri algebracA ; it canbeshown[25] that,it termsof r, the
previousresultreads

(54)

where F now denotestheodd generatorof cA over QA (F
2 = 1, of sect.2.8)and

q is thepseudodifferential introducedin sect.2.8, eq.8.
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10. FREDHOLM MODULES

10.1. Motivations
From thephysical point of view, ClassicalField Theoryusuallyinvolvesthe data

of a differential (or pseudodifferential) operatorP. for instancethe Dirac operator,
mappingthesectionsof a first vectorbundle E0 aboveX (the classicalspinor fields,
for example)into the sectionsof anotherbundle E, aboveX . Of course B0 may
coincidewith E1 . Actually, physicistsusuallyassumethat thevectorbundles E0 and

B1 are equippedwith somechosenmetric (in orderto write an actionprinciple and

expressionslike fM (cc, Pcc)) . The first thing to do is then to completethe spaceof
sectionsof E0,E~for someSobolevnorm, thusbuilding two Hilbert spacesH0 and

H1 with P : H0 —~ H, . Onethen wantsto use a propagator,thereforean inverse Q
to P; theremaybe problemsat this level.

It is convenientto write H = H0 ~ H, and

F IOQ
[p 0

and to think of ( H,F) as a whole.Thegeometrical(or algebraical)structuregivenby

a pair (H, F) is calleda Fredholmmodule;we will givebelow (in Sect.10.2)aprecise
definition. In the abovecaseA = C(X) andthis commutativealgebrais represented
by multiplicationoperatorin H.

Finally,whena physicistquantizesa classicaltheoryandbuildsa quantumfield the-

ory, he follows well definedalgorithmic procedures(that we will not recall here)that

havecertainlya purelygeometricalinterpretationsincethey dependonly on geometri-

caldatabuttheseprocedureshaveusuallybeendevelopedin a perturbativecontextand
their global geometricalmeaningis often unclear.Thenotionof Fredholmmoduleex-
ists also when A is notcommutative.Thehopeis that someof thematerialpresented
heremay help to clarify thesequantumaspects.It is believed— at leastsomepeople

includingtheauthorbelieve— that suchstructures(or moreprobablygeneralizationsof
them) will give us one day a tool to analyse(anddefine) QuantumFieldTheoriesin a
nonperturbativeway.

Fromthe mathamaticalpointof view, andas we shallseebelow,Fredholmmodules

are alsoof fundamentalimportance.Wealreadymet, in the previouschapters,thenon-
commutativeanalogueof differential forms and of de Rhamcohomologybut not the

analogueof elliptic operators.Elliptic operatorsare in a sense,dual to vectorbundles:
out of an elliptic operatorand a vectorbundle,onegetsaninteger,namelythe index
of this operator. In this sense,one cansaythat elliptic operatorson a space X should
allow usto build the <<dual>>of the theoryof vectorbundlesabove X . Thelatterbeing
called K-theory (ef. Sect. 9.3), the former is then called K-homology. In orderto
definethis notion properlyin the noncommutativecase,onedefinesFredholmmodules
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as in 10.2. (they arethepropergeneralizationof thenotionof elliptic operator). In the

casewherethe algebraA understudy is C(X) , the K-homology of X is roughly
speakingdefinedasthespaceof homotopyclassesof FredholmmodulesoverC(X) —.

As weshall seelater(sect.10.3), a Fredhoimmodulecalled(H, F) allowsusto build
infinitely many cycleson A (in the senseof sect.5.9); all havethe sameunderlying

differentialalgebra A but they areof dimensionn ~ p wherep is arealnumber(not
necessarilyan integer)dependingupon(H, F). Thecharactersof thosecyclesgive us,

asin 5.4, awholehierarchyof cyclic cocylesonthealgebraA.
Fredholmmodulesbeingthegeneralizationof elliptic operators,wewill definetheir

indexin sect.(10.4). SinceFredholmmodulesyield cycliccocylesandsincecycliccocy-
despairwith K-theory (cf. sect.9.5), thenFredholmmodulesalsopairwith K-theory

but, thistimethevalueof thepairing will bean integer(sinceit will beequalto the index
of anoperator);this will bediscussedin sect. 10.5. Till now,wedid notmentionthefact

that, as it occursmostof the timein physics,the operatorthat we wantto studyis not
necessarilyboundedanddoesnothavealwaysan inverse;wewill indicatein 10.6howto
handlethis situation(as physicistsknow,onejusthasto introduceanextra-dimension).

A lastproblemthat appearsin physicalsituationsis that veryoftentheFredholmmod-
ulesof interestarenot finitely summable(thenumberp mentionedaboveis infinite); to

tacklethis situation,one introducesthenotion of 0 -summableFredholmmodulesand
replacecyclic cohomologyby entirecyclic cohomology;this will bediscussedin 10.6.

10.2. p-summable Fredholm modules

Wefirst recall afew basicdefinitions.
Polar decomposition. Let H a separateHilbert spaceand £(H) the spaceof

boundedoperatorson H . Thefirst thingto rememberisthatif I’ E £(H) thenonecan
definetheadjoint T of T and T*T is apositiveoperator(Vx E H, (T*Tz,x) � 0).

Onethendefines ITI = s~/’~~— one cantakethe squareroot of apositiveoperator—

indeedthereis only oneoperator ITI such that IT!2 = TtT. Onecanthen write
T ITI~Twhere ~T is by definition thephaseof T.

Schattenclasses£~. Let p be a real numberp > I , then,the Schattenclass £‘~
is definedas the spaceof all boundedoperatorson H such that Trace ITI9 is finite.
Calling p~(T)the ntheigenvalueof TI , onecanreplacetheaboveby the condition

that

(~a,,(T))9

is finite. Intuitively, theeigenvaluesof T shoulddecreasefastenoughat infinity and,
usingthe quantumfield theoreticaljargon, onecould saythat p measurestheway T

behavesby powercounting. Onecanprovethat £~is a two-sidedideal in £(H),
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that £~C £~if p < q and that £~is completefor the Schattennorm II T =

(Trace TI9) I/p We shouldrememberthat

where £1 are trace-classoperators,£2 are Hubert-Schmidtoperators,and £00 are
compactoperators;wereferto anytreatyof functionalanalysisfor amoredetailedstudy
of thesespaces.Let us formally rememberthedefinitionof a Fredholmoperator: P E

£(H) is Fredholmiff it is invertiblemodulo compactoperators,i.e., if onecanfind
Q E £( H) such that PQ — I and QP — 1 arecompactoperators.

Pre-Fredhoimmodules( H, F) overan algebraA (apossibly Z
2 -graded-algebra).

This is a Z2 -gradedHubertspace H = H~~ H_ endowed,from theone hand,with a

representationp of A into H , (so H is a left A-module)and,from the otherhand,
with aboundedoperatorF E £( H) which is odd for the Z2 gradingandsuchthatfor

any f E A, the operatorsp(f) (F
2 — I) and [F,p( f)] arecompact. The grading

operatorcanbewritten as

Any operatorC of £(H) canbe written as C = C~+ G_ , where

C~=

with Cr = FCF. Therequirementfor F to beodd meansthat Fr = —F, thus F

canbewritten as

F
[po

As anexampleat theclassicallevel,one could think of P as an elliptic operatorof

order 0 from a vectorbundle E÷to a vectorbundle E abovethesamespaceX;
and H arethen the Hilbert spacesof squareintegrablesectionsof thesebundlesand

f E A = C( X) acts on H÷and H_ , by multiplication. A similarkind of structure
naturallyemergesin QuantumFieldTheoryas well (the caseof supersymmetricWess-

Zurninomodels,where F is a Dirac operatorona loopspace— a supersymmetrycharge
— and F2 is the Hamiltonianinvestigatedin [29]).

Fredholmmodules(H, F) over an algebraA. The definition is the sameas for a

pre-Fredholmmodulebut we replacethe condition<<p( f) (F2 — I ) is compact>>by
thecondition<<F2 = 1 >>. In orderto use the formalism of sections1 to 9, it is indeed
importantto have F2 = 1 (andnotonly F2 — I compact!),this is linked, as we shall
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seelater, with the fact that wewant to defineanoperatord with d2 = 0 . Actuallythere

is a way to associatecanonicallyto eachpre-Fredholmmodulea Fredhoim module,this
is explainedin [7], p. 305, let usjust indicatethat one has just to double the numberof
components,i.e.,to add anextra-dimension(time?) i.e., to replaceH = H~~ H_ by

~

The first notion of Fredhoim module is dueto Atiyah [36], in the caseof manifolds
of even dimensions, his definition has beengeneralizedby severalauthorsand finally
broughtto thearenaof noncommutativegeometryin [7].

p-summablepre-Fredholmmodules(H, F) over an algebra A. In the caseof a

pre-Fredholmmoduleoneimposesboth [F, p( f)] E £~and p( f) [F2 — 1] E £~.

In thecaseof aFredholmmoduleoneimposesonly the first conditionsincethesecond

one is alreadyreplacedby the condition F2 = 1. Example: The Fredhoimmodule
coming from a given elliptic operatoracting on sectionsof a vectorbundleover X is
p-summablefor p > dim X.

Wewill seelaterthatit maybenecessarytoremovetheconditionthat F isabounded

operatorandreplaceit by the weakerhypothesisthat F is apossiblyunbounded,self-
adjointoperatorsuchthat [ F,p( f)] is boundedfor any f E A (morally F isof degree
1) and such that F’ is p-summable(morally,theeigenvaluesof F increaserapidly

enoughatinfinity). Suchadata( H,F ) canbecalledan<<unboundedFredholmmodule>>

or a<<Connesmodule>>(as in [8]). Actuallyonecanevengetrid of thehypothesisthat F
is invertible. Thetypical exampleis given by the Dirac operatoractingon L2 sections
of the bundle of spinorsovera Riemannianspinmanifold.

10.3. From p-summableFredholm modulesto cycliccohomology

The fundamentalobservationallowing usto link Fredhoimmoduleswith the restof
thetheorydevelopedin sectionsIto 9 isthe following: let (H, F) a Fredhoimmodule

with gradingF , let x E £(H) , thendefine

(55) dX=i[F,X]g

wherethegradedcommutationisdefinedas follows

(56) [F,X]g = r’[r’F,x] = (Fx — Fzr’F) = (Fz — XrF).

Then d is a derivationand

d2 = 0

Actually, oneobtainsmoregenerallytheobviousequivalence

(57) d2=0~F2=l
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Noticethatonecanalwayswrite, for x ~ £(H)

2: = X.~.+ 2:

with

z~=

and 1r = F iF. Then dx definedas abovecanalsobewritten

dx= [iF,x~]+{iF,x}.
~-~--~ ‘—u----

dx— dx+

When F
2 ~ 1 wecancheckthat d2x = [x,F2]

Onecan thereforeapply theuniversalproperties(ef. sect.2) of thedifferential enve-
lope ~ (A) andassociatethe<<abstract>>monomialsa

06a1 6a2 . . . 6a,, of ~ (A) with

the <<concrete>>operators

aoda1da2...da~=i”p(ao)[F,p(ai)]g[F,p(a2)]g...[F,p(a~)]g.

All the constructionscarriedout in sections1 to 9 could be <<explicitly>> doneby
representing~2(A) is sucha way.

At a formallevel, the ideais the following. Onefirst buildsthedirectsum

A = A~

whereA° = p(A) andA~isthelinearspanin£(H) ofmonomialsp(a0)dp(a1)

dp(aq) andwhere dp(a.) = i[ F, p( a~)]~. Then A is a differential algebrawith dif-

ferentiald. Moreover,onecandefinethe following <<supertrace>>

(58) Str(x) = Tr Fi

This definition makes senseif x E £1 (a trace-classoperator). Notice that

Str(xy)=(_l)P~Str(yx) where p=degx, q=degy andthat

Str(dx) = Tr Fdx = i Tr(FFz — FxFF) =

= i Tr(FFz — zUF) = 0.

Sothat Str is a closedgradedtrace.Actually, oneprovesthat if (H, F) is p-sum-
mable,then A k C £P/k. We arethereforein the situationdescribedin sect. 5.4. We
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obtaina cycle w E A” —+ Str(w) when n is big enoughsuchthat thesupertracecon-
verges,and thecharacterof this cycle yields a cyclic cocycle. Notice howeverthat the
supertracevanishesif x is homogeneouswith odd degrees,thereforewe will only get
evencyclic cocyclesin this way (thiscouldbecalledtheFurry’s theoremof noncom-
mutativegeometry!).Since F is odd (rememberthedefinitionof Fredholmmodules),

we find that,formally,wecanwrite

(59) Str(x) = ~-Tr(FF[F,x])

butthismakessenseforanyboundedopeartorx assoonas [F, x] is traceclass.Using

the factthat theFredholnimodule(H, F) is p-summable,onefinds that

Str(p(a0)dp(a1)...dp(a~))

existswhenevern ~ p — 1. In otherwords,to eachp-summableFredhoimmodule

(H, F), onecanassociatea hierarchyof evencyclic cocycles i-,,, n = 2 m ,obtainedas
thecharactersof thecycles

(60) fw = (2iir)
mm! Str(w),

for w E A” , (cf. sect.5.4),andexplicitly givenby anyof the following formulae:

T(a
0,a1,... ,a~)= (2iir)

mm! Str(p(a
0)dp(a1) ...dp(a~))

= (2i7r)
mm! Tr (Fp(a

0)dp(a1) . ..dp(a,,))

(62) (2i7r)
mm! i”Tr(Fp(ao) [F,p(ai)]...[F,p(a~)])

= (2i~)mm! Tr (FF [F,p( ao)]g... [F,p(a~)]
9).

The last formularesultsfrom theformal trick (58,59)and this actuallyshowsthat

onecan indeedtake n ~ p — 1 (the factthat the traceconvergesfor n ~ p resulting
obviouslyfrom thedefinitionof p-summability).Thesecyclic cocycles ; arecalled
the <<charactersof Fredholmmodule (H, F) and their cohomologyclasses[i-~] are

denotedCh
m(H, F). Notice that if A is trivially Z

2-graded, then p( a), a E A
is even (p(a)r = p( a)) and the gradedcommutatorbecomesa usual commutator:
dp(a) = i[F,p(a)].

The examplewhere A = C~(X), X atwo-torus(consideredas a quotientof the

complexplaneby a lattice) and

F=I 0 (c3+~’
[~+~ 0
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is carriedout in [7]. Here ~ is chosento make(~+ ~) invertible. Sincethespace

is two-dimensional,the module is p-summableas soonas p > 2 ; it is in particular
3-summableand onegets a two-cocycle

r(f°,f’,f2) = (2iir) Str (f°i[F,f’]i[F,f2}).

Theexplicit calculationshowsthat

~f
0,f1,f2) = f~odf’ Adf

2,

where f’ ~ C°°(X) . Theresultis not toosurprisingin view of thecorrespondencebe-

tweencyclic cohomology and the De Rham homology for currentsmentioned in

sect.4.6.2.

Since F2 = I , noticethat

[F, a°]F= Fa°F — a°= Fa°F — F2 a
0 = F[ a

0,F]

(Hereour notationdoesnot distinguishbetweena and p(a)). Since F = F1 we

couldwrite (forexample)

FF~[F,a°]F1[F,a’]F1[F,a2] =

= FF[F,a°]F][F,a’]F[F,a2J =

= FF[F,a°]F2[F,a’][F,a2] =

= FF[F,a°][F,a’][F,a2}.

In thecasewhereA istrivially Z
2-graded, onecanthereforealsowrite theprevious

cyclic cocylesas follows:

T(a°,a
1,... ,a”) =

(63) 1
=(2i~r)mm!~~Tr(FF_I[F,ao]F_1[F,a1]...F_I[F,an]).

Thismay appearasan artificial andratherformalmanipulationbut it is usefulfor the
following reason:onecanprovethatfor an invertibleoperatorF of squarenot equalto
1,this formulastill givesacyclic cocycle. Onedoesnotevenhaveto supposethat F is

a boundedoperator on the Z
2 -graded Hilbert spaceH butonly that F

1 is bounded,
that F~[F, p(a)] belongsto £~for any a E A and, of coursethat FF = —F F.
Sucha datais calleda <<Connesmodule>>in [81.Theproofof this result[7] is obtained
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by building,out of this Connesmodule, two Fredholmmodules(H1,F1 ), (H2 , F2)
with correspondingcharactersT1, r2 andgetting r has

-T2).

Onecanevenreplacethecondition<<F-invertible>>by theweakercondition

(1 + F
2)~E

In the last case,the previous formula is still valid, provided weregularise F1 ; this
is obtained by replacing F by F~,= �F~1 + I ~ where

10 1

/3 [io

and c is a small realparameter.Indeed F,~= (1 + e2F2)~lsothat F, is invertible.

Onecanthink of c asthe inverseof a Pauli-Villars massregulator,indeed,wecould
also replace F by FM = F~l + M1~/3then F~= (F2 + M2) ®l andthisis—

in a particularcase— the well-knownconstructionassociatingto theDiracoperator,the
Dirac Hamiltonianwithmass M. In anycase,formula(63) still givesusacycliccocyle
; whenwereplaceF and F~ by .F~and F,’. Theimportantfact [7] is that the

cohomologyclassof i~ is independentof � andthat thelimit

r(a°,a’,...,a”) ~
exists. The limit c — 0 (or M —* oc) canbe thoughtof as a casewhereeverything

is localized. The readerfamiliar with one loopcalculationsin QuantumFieldTheory
can recognisethepreviouscocycleas aoneloop Feynmandiagramof aspecialtype.

In thecasewhere F is the Dirac operatoron an evendimensionalmanifold, T ap-

pearsas a fermionicloop(a (n+ I )-gone)with one insertion of the helicity operator

(F = ‘y.~ here). Formally, if A is the algebraof smoothfunctionson R”, wecanin-
terpret p(a

1) as testfunctionsobtainedby superpositionof exponentialsexp(ip5x)
by going to Fourierspace,one recognisesED,p( a,)] as aninsertion of =

at the vertex j (since [‘y’~a~,exp(ip1x)] = ii,) and D’ as the Dirac propagator.
Tr denotesboth a tracein the Clifford algebraandan integralover dxv. Moreover,the
usualconservationof impulsionateachvertexcomesfromthe factthatproductsbecome
convolutionproductsin Fourierspaceandfrom thepropertiesof the exponential.One
getsmoreoveran overall conservationof momentum

~ (P0 +
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which showsthat the result is a functionof n independentvariables.This type of dia-

gram, withoneinsertion of an axial current,is quite standardin QuantumFieldTheory.
The p-summability of the Fredholm module is a translation of the fact that this type of
diagramis convergentwheneverthenumberof externallegs is ~ (p+ I) . Going back

to i-space,wewill give the4-cocycle T
0 ( f

0 f1 , f2 , f3, f4) when A is the algebra
of smoothfunctionsoveran4-dimensionalspinmanifold (F beingtheDirac operator):

T

0(f°,f’,f

2,f3,f4) =

(M) = f ~ df1 A df2 A df3 A df4+

+ If fofIf2fif4R~RV dz~Adx~A dx~A dx~

whereR is theRiemanncurvaturetensor.Thegeneralformula([7]) for a manifold X

of dimension n is:

To(~,...,fn)ftdf1A...Adfn+(S2wi)(~,...,fn)

(65)

wherethe are thedifferential forms = A~(p
1,..., p~)expressingthe A genus

of X , and S is the suspensionoperatorof cyclic cohomology(sect.5.1). Here,the w3

areof degree
4j andshouldbeviewedas a current of dimensionit— 4j:

(66) ~
1(fO,...,ffl_

4)) = ff0 df’ A...Adf”4’ Aw
1.

A given Fredholmmodule (H, F) definescyclic cocycles T~,T,,,2 , ... and

thereforecyclic cohomologyclasses[rn], [T~~2], [7~÷4] .... Onecanprove[7], that
S[r~] = [r~÷2] where S is the operatorintroducedin §5.1. Thenumberobtained
from thepairing of e with r~~ HA” wasgiven in sect.9.5. From this lastproperty,it

is clearthatanyof thecharacters[Ta] , for n largeenough,definesan elementof the
evenperiodiccyclic group H~ (cf. sect.5.3). This elementis denotedCh*( H, F)

andcalledthecharacterof the Fredholmmodule (H, F)
We do not explainhow to constructodd-dimensionalcyclic cocyclesfor analgebra

A [7]. Roughlyspeaking,onehasto build a Fredholmmodulefor thealgebraA ®CL

where CL = C + C is the Clifford algebrageneratedby 1 and a with a
2 = I

10.4. Noncommutativeindextheory •
Wealreadyknow (sect.9.5) that evencyclic cocyclespairwithelementsof K

0(A)

a generalizationof the factthat onecanobtaina numberby integratinga characteristic
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classoverthe baseof a vectorbundle. Sincea Fredholmmodule (H, F) over A (a
generalizationof an elliptic operator) provides us with a whole hierarchy of cyclic co-
cycles i-~, it is clearthat we canpairthosecyclic cocyclesagainstan arbitraryelement
[e] E K0 (A) ([eli describingan equivalenceclassof finite projectivemodulesover

A and e beingexplicitlygiven as anidempotentin Mk(A) ). The last resultof section
10.3 showsactuallythatthe interestingpairing is obtainedbetween [e] E K0(A) and

[T] = Ch(H, F) in H~ . Theimportantresultisthat this number ([eli, [r]) turns
Out to be the index of a Fredholm operator and, therefore, an integer. Writing

1°QF [po

and

{e0 0 1
e Lo e~]

oneconsiders

[0 Q,
eFe [p 0

P~ (eFe)+ is a Fredhoimoperatorandits index turnsout to beequalto (Eel, [r]).
Thefactthat thisexpressiondependsonly andadditivelyupontheclass[ e I isa remark-
ableproperty[7].

10.5. NoncommutativeconnectionsusingFredholm modules

Let V be a noncommutativeconnectionacting on a (right) finite projectivemod-
ule E overa unital * algebra A, with values in theuniversaldifferential algebra

(~(A),~)-cf.~9.4.Let also (H,F) be a (left) Fredholmmodule (with F
2 = 1).

Then, as in § 10.3, onebuildsthedifferential algebra

A = ~qA~

whereA~isthelinearspanofmonomialsa
0da1 ...daq andwhere d42q = i[F,aq],aq

E A. Here weno longerwrite explicitly themorphismp suchthat A° = p( A) . The
universalmap (~(A), 5) —+ (A , d) allows us to replace<<abstract>> ~1-connections
by <<concrete>> A -connection.In theparticularcase E = A, suchaconnectionwill be
describedby anelement

w = > a1db2 = i> a1[F,b1]
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of A I andits curvature�) as

e = dw + = j(Fw + ~F) +

indeed

dw = i[F,W]g = i(Fw+ wF),

sinceit is a gradedcommutator.To makethingsevenmore concrete,we cantakethe

exampleof a compactRiemannianmanifold M of dimensionn, with H the Hilbert

spaceof L2 spinorson M andwheretheoperatorF isthephaseof theDirac operator
(F = DIDj~) i.e., from thephysicalpointof view, is the operatorthat distinguishes
betweenpositiveand negativefrequencies.Fora four-dimensionalmanifold M , the

aboveFredholnimoduleis p-summablefor p = 4 + �, �> 0. On theotherhandwe
mentionedin § 10.3the factthat A ~C ~9/~ whentheFredholmmoduleis p-summable.
The curvature0 E 2 C £9/2 , sothat 8 is a }1ilbert Schmidt operator(8 E £2)

wheneverp < 4 . This showsthat thenoncommutativeYang-Mills action(or, for that

matter, theMaxwell action). Trace(8’8) is finite in dimension4-c. This is a nice
reformulationof the correspondingfact in perturbativeQuantumFieldTheory(which
havebeenknown by more thanforty yearsby physicists). Onecanprove (exactlyas

in QuantumElectrodynamicsfor example)that in dimension4 thedivergenceof trace

(8*8 ) is only logarithmic ([41],[any book on QED]) and that its principalterm (the
coefficient of log(L) if L is acutoff) canbeidentifiedwith theclassicalaction. Tech-
nically, thecalculationof theprincipaltermof suchanoperatorP isgivenby Wodzicki

residueorequivalentlyby theso-calledDixmier trace [41].

10.6. 8-summable Fredhoim modules 0

In somecircumstances,thealgebraA in which we areinterestedis <<sobig>> that one
cannotfind p-summableFredholmmodules. This happensin particularin Quantum
Field Theory(the caseof the algebraof quantum fields in the supersymmetricWess-
Zuminomodelis suchanexampleand hasbeenanalysedin [29] [30]). However, it may

bepossibleto find Fredholmmodules(H, D,F) , with FD = —DF asusual,butsuch
that exp(—tD2) isoftraceclassforanypositivet. Thisiscalleda8-summableFred-
holmmoduleover A (thenamecomingfrom the analogywith 8-functions)[251126].

As in the finitely summablecase,onecandefineevenand odd 0 -summablemodules.
We will restrictour discussionhere to the caseof evenmodules. In order to explain
how sucha module definesan (even)entire cyclic cocycle (‘~2n)i~�Ncalledthe char-

acterof themodule,the bestis probablyto give an analogywith the finitely summable
case.In the p-summablesituation,we sawhow to constructa homomorphismir from

theuniversaldifferentialenvelopeQA to a concretedifferentialalgebra A (replacing
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thesymbol t5a by theboundedoperator i[ F,a]9 onthe Hilbert space H) and how to

build cyclic cocyclesby usingthenaturalclosedgradedtraceon A . Here, in thecaseof
8 -summableFredholmmodules,thesituationis similar, butmoreinvolved. Onehasto
replace~ A by theZekri algebra�A = QA~ QA andthedifferential algebraA by an

algebra£ = £ ~ £ where £ is a convolutionalgebraof operator-valueddistributions
T(s) with supportin R~and valuedin boundedoperatorsin H. Thehomomorphism
ir from cA to L is given by a homomorphismfrom A to ~ and anelementof £ of
square1. Onecanalsodefinea naturaltrace T on thealgebra£. Thecharacterof the
module( H, D, F ) isthendefinedasthe traceon cA givenby r( ir( x)) , i.e., formally

by thesameformulathat in the finitely summablecase.The analysisrequiredis how-
everslightly involved andwe referto [25] for the details.Thefact thatthecharacteris
anentirecyclic cocycleis clearsinceit is a traceon cA, cf. sect.7. Foreachn, one
obtainsin this waya (2 n+ 1) linearform r2~on A , correspondingto themonomial
a

0 8a’ . . . i5a”. By definition the componentsof the characterare the membersof the

sequence(~2~),~Nwhere

~2n = F (~+~)T
2,,.

Theprevious<<abstract>>definitionof r2,~allows to computeanexplicit expression

for
7~2n~Actually, thereexisttwo different formulae for the character.The first one,

givenby [25] is the following.

~n(a0,a1,...,a2n)=TrfF(im+a)a0[F(im+a),ah]...

(69) -_

[F(im+ a),a2n]e(~m~2 ~I~±

where F( m) = (D + mF) ( D2 + m2)— I/2~ The resultis actually independentof
a > 0 . Notice that,sinceF2 ( m) = 1 , if we formally permutetraceand integration

and set a = 0 the right hand sidereadssimply

f+~Tr(F(m)a0[F(m),a1]...[F(m),a2n])e_m2 ~.

-00

The secondformulawas establishedin [29] andwe describeit below. Onefirst in-

troducea time variable t and set z(t) = e_tIhxe~~thIwhere D maybe, for exam-
ple,the Dirac operatoron a loop spaceand H = D2 is a hamiltonian(laplacian).To
avoid a possibleconfusionbetweenthe timederivativeoperatord/dt and the deriva-

tion which was called d in sect. 10.3, we changeour notationshere and denotethe
latterby A . Therefore x = i[ D, X]g~ A 2~= Li, D2] = [x, H] . It is then clear
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that A(x(t)) = i[D,x(t)]9 = ethtAxethI = (Az)(t). The relationbetweenA and
thetimederivativeis thenthefollowing:

A
2x(t) = [x(t),H] =

The formula for the character reads

r~”(a°,a’,... ,a2”) =

(71) = (_/3Y”f Tr(Fa°(O)F[a’(t
1), D]F[a

2 (t
2), D]

O<t, <~2 ...<t2,,<$

F[a
2”(t

2~),D]e~”)dt0dt1 ..

where a(t) = etHae+t~~1’. The cohomologyclassesdefinedby ~“ are independent

of /3. The link betweenthesetwo expressionhasbeenstudiedin [28] but seemsstill
unclear. The last formula is ratherappealingfrom the physicalpoint of view. It can
be obtainedformally from a0da, . . . da,, by replacing da~by Aa1(t1) . Theabove

formulacanof coursealsobe written by usinga chronologicalT-product.
Onecanalsoprove[25]that evaluationof thecharacteron an elemente of K0(A)

(representedas an idempotentof A) gives the index of the Fredholmoperator D,~=

(eDe)~.

11. KASPAROV KK-THEORY (GENERALITIES) 0

The bivariant theoryof Kaspamv[38] (called KK-theory) is usuallyconsidered
as a quite esotericsubject. However, it is somewhatat the root of most of what we

discussedsofar andwe couldhavestartedthepresentreviewby discussingthis theory.
Ourpurposehereisonly to give a glimpseof whatthesubjectis, and we follow moreor
less theideadevelopedin [10]and [24]. Thepresentsectioncouldactuallybe readjust

aftersection2 wherewe showhow to constructtheuniversaldifferentialenvelope ~1A
as well asthe Cuntzalgebra QA and the Zekri algebracA from a given associative

algebraA.

11.1. The group KK°(A,B)

Let A and B be two (denumerablygenerated)algebras. Thenone definesthe

abeliangroup KK°(A,B) = [qA, K ® B]. For this definition to be meaningful,
we haveto give thedefinitionof qA , of K® B andof the symbol []. qA wasalready

definedin section2, it is the idealof QA generatedby the symbolsqa, a E A. K® B
denotesthe limit of

7B O\ /M2(B) O’\
BL~~*~ I~-+~

\\OO) ~\ 0 0,1
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K standsfor the algebra of compactoperators.Finally [D1 , D2] denotesthe space
of homomorphismsfrom the algebraD, in the algebra D2 quotiented by homotopy.
Two suchhomomorphisms~, and ~2 arehomotopicif onecanfind ahomomorphism

~, from D1 into D2 [0, 1] = C( [0, 1]) ® D2 suchthat ~ = ~ and ~ = ‘P2~

The abovedefinition is dueto [10]. Theoriginal definition [38] of KK°(A,B) was
to defineit asthe abeliangroupof homotopyclassesof quasi-homomorphismsfrom A

to B. A quasi-homomorphismbeingitself apair (ip, ço’ ) of homomorphismsfrom A
into an algebra E such that for all a E A, ~o(a)— ~(a) E K® B . The equivalence
betweenthetwo definitionscomesfrom the factthattheCuntzalgebrafactorisespairsof
homomorphisms(as wesawin sect.2). Wewantto think ofan elementof KK°(A,B)

asa generalizedhomomorphismfrom A to B.

11.2. Thecaseof manifolds

Where A or B isthealgebraC(X) of continuousfunctionsoverthemanifold X,

onefinds that KK°(C,C(X)) = K°(X) isthegroupofK-theory of X introduced
in sect. 9.3, and that KK°(C(X),C) = K0(X) is thegroup of K-homology of

X introducedin sect. 10.1. More generally,one obtains KK°(C, A) = K0(A) and

KK°(A,C) = K°(A).

11.3.TheKasparovproductfor KK°

Kasparovintroduceda map

KK°(A,B) x KK°(B,C) -, KK°(A,C).

Thismapisbilinear(on both sides),associativeandcompatiblewith thebifunctorial

propertiesof KK (indeed KK is a bifunctorbetweenpairsof algebrasand abelian

groups).Theoriginal definitionof the Kasparovproductinvolving compositionof pairs
of homomorphismsis ratherinvolved but in the presentframeworkit just becomesa

compositionofhomomorphisms(here,onehastoprovethat workingwith q
2A is equiv-

alent to working with qA,a propertywhich isnot obvious). Noticethat in the caseof
manifoldsweget

KK°(C,C(X)) x KK°(C(X),C) -+ KK°(CC)

but C canbeconsideredasthe algebraC (pt.) of functionsoverapoint, sothat

KK°(CC) = K°(pt.) = Z

(sincethedimension— aninteger— is theonly topologicalinvariantof acomplexvector
space!).Sowe recoverthe(Z-valued)pairingbetweenK-theory (vectorbundles)and

K-homology (elliptic operators).
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11.4. Thegroup KK’(A,B)

Themostdirectdefinition isprobablythe following:

KK’(A,B) = KK°(SA,B) (~KK°(A,SB))

where

SA= {fEA[0,1]/f(0) =f(l) =0}

isthesuspensionof thealgebraA.

Anotherdefinitionmakesuseof thepropertiesof algebrasextensions:eachelement
of

KK’(A,B)

definesa half-split extensionof B by A, i.e. anexactsequence

ir
-4

0—*K®B-D_A-+0
a

wherethe lift a is a sectionbutnot necessarilyan algebrahomomorphism(hencethe
<<half>> of <<half-split>>).

A lastdefinitionsimilar to the Cuntzdefinitionwas proposedin [29]. Namely

KK’(A,B) = [�A,K®B].

cA beingtheZekri algebraof A.

11.5. The Kasparov product for KK’ and KK°

GiventhesealgebrasA, B and C, one candefineaproduct x with

KK°(A,B) x KK°(B,C) —~ KK°(A,C),

KK1(A,B) x KK°(B,C) —* KK1(A,C),

KK°(A,B)x KK1(B,C) -÷ KK1(A,C),

KK’(A,B) xKK1(B,C) ~KK°(A,C),

of courseonecould be temptedof defining KK~~1(A,B) = KK0(SA,B) for any
it> 1 but it canbe proved(Bott periodicity in KK-theory) that KK~2(A,B) is

isomorphicwith KK~(A,B) sothat only KK° and KK1 arerelevant.
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12. FRONTIERS

In thepreviouschapters,it hasnotbeenpossibleto coverall possibleaspectsof this
fastly developingfield. In the presentsectionwe want to indicatea few othertopics
alongwith somereferences.

— Yang-Mills equationson noncommutativespaces.The moduli spacefor connec-

tionsminimizing the Yang-Mills functionalon anoncommutativetwo torus(the C*~al~
gebrageneratedby two unitaryoperatorsU1 and U2 , subjecttotheconditionU1 U2 =

)~U2U1)hasbeenanalysedin [3911.It was shownthat it is a commutativetorus T
2.

— NoncommutativeRiemannianstructures.The key observation[26] is that if M
is a compact,spin, Riemannianmanifold and D is the Dirac operatoracting on the

L2 sectionsof thebundleof spinors,it is possibleto reconstructthegeodesicdistance
d(x,y) betweentwo pointsfrom the formula

d(x,y)sup{lf(y)—f(z)I; fEC(M), IID,fII�1}.

The theorycanbe generalizedby replacingthe precedingdataby anarbitrary un-

boundedFredhoimmoduleoveranoncommutativealgebraA.
— Dirac operatorscoupledto connectionsinnoncommutativespaces.If (h,D) is a

<<Connesmodule>>for thealgebraA (as in sections10.2, 10.3),then

[OD
F- [D-’ 0

definedon H = h + h is also a left moduleon A. Moreover,onecanconsidera

A -connection V on aright finite projectivemodule E (asin sect.9.4and 10.5),(A , 6)

beingagradeddifferential algebrawith ~ = A. Onecanthenbuild thespace

EH = E®AH

on which theoperatorp = V 0 iF acts. Notice that p is not a connectionin the

generalsensebut p2 = I — 0 where 0 is the curvature of V. If we think of D asa
Diracoperatorand V as ausual connection,we seethat p generalizestheideaaDirac
operatorcoupledto agaugepotential [40].

— Groupactionsand crossedproducts.Let C bea group actingby automorphisms
in the algebraA (g E C —+ a(g) E AutA) . Thenwebuild C xaA as the spaceof

equivalenceclasses(g,a) (gk,a( k~)a) . Onecanalsorepresentanelement )~of
C xaA asa mapfrom C to A equivariantundera. Thiscrossedproductis endowed
with analgebrastructureunderthe convolutionproduct

= ~

hoG

When A is the commutativealgebraC(X) in theparticularcaseswhere X/C is
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a<<bad>>quotient(andwherethestandardtoolsof usualgeometrybreak down), thenon-

commutativegeometryof thesecrossedproductsoffersagoodalternativetothe<<usual>>
geometryof X/C.

Remarks

It should be clear that what wediscussedso far are topics belongingto <<Noncom-
mutativedifferential geometry>>. Indeed,in the studyof commutativealgebras(i.e., in
<<usual>>geometry),one usuallydiscussesmeasuretheorybeforetopology,topologybe-

foredifferentialgeometryandLie groups(for example)afterdifferentialgeometry.The
samelogicalpath canalsobe followed in thenoncommutativecase.

On one sideof noncommutativegeometry,wehavenoncommutativemeasuretheory.

Usual measuretheorytellsushow to geta numbertp( f) outof a function f (belong-
ing to a commutativevon Neumannalgebra (8) L of essentiallyboundedmeasurable

functionson a space X) via the relation p(f) = f~f dp where p is a measureon

p is calleda weighton L. The main point is that any pair (L, p) of a commu-
tative von NeumannalgebraL and weight ~ canbe obtainedas abovefrom a space
X with a measurep. Thereforethe classificationof pairs (L, ~o), with L commuta-
tive, amountsto a classificationof measuredspaces.It is therefore clear that the theory
of weightson noncommutativevon Neumannalgebrascanbe calledanoncommutative

measuretheory. To makethelink with physics,rememberthat to eachweight p on L
correspondsaoneparametergroup a~of automorphismsof L (at isthe identitywhen-

ever L is commutative)andthat,in thecasewhere L is a matrix algebraMm(C) and
ço is givenby p(f) = Trace(fe~”)/Trace(e~”), then a~describesthe evolution

of the system: a~(f)= ett Iife_ItH . Wereferto [42] for a surveyof noncommutative
measuretheory.

On the <<other side>>of noncommutativedifferential geometrywe find the so-called
QuantumGroups(cf. [43],[44]). Thesearenotgroupsbutarenoncommutativealgebras

A on which hasbeendefineda co-product. Thegroup law on a group C is a map
C x C —‘ C endowedwith somewell-knownproperties.Thiscanbe translatedin aco-
product A ~ A ® A whereA is the(commutative)algebraof complexfunctionson

C (if f ~ a then Af(g1 , g2) = f(g1g2) ); theseco-productshaveparticularproperties
obtainedby <<dualizing>>theaxiomsof a group. QuantumGroupsarethen obtainedby

replacingthecommutativealgebraA by an arbitrarynoncommutativealgebra.Quan-

tum Groups(andtheir representations)seemto play a role in physics(particularly in
relationwith two-dimensionalstatisticalmodels).

(8) Elementsof the algebraL can be also consideredas operatorsin the HubertspaceH =

L
2(X,~z)wherethey actby multiplication, It is easyto seethat L is equalto its commutant L’

in H andthereforealsoto its bicommutantL”. HenceL is avon Neumannalgebra.
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